Please wait a minute...
材料导报  2020, Vol. 34 Issue (9): 9095-9100    https://doi.org/10.11896/cldb.19050008
  无机非金属及其复合材料 |
石墨烯热学性能非简谐效应的研究进展
程正富1, 周明军2, 杨邦朝3, 郑瑞伦1
1 重庆文理学院电子电气工程学院,重庆 402160
2 中国电子科技集团公司第四十九研究所,哈尔滨 150001
3 电子科技大学电子科学与技术学院 成都 610054
Research Progress on Non-harmonic Effect of Themal Properties of Graphene
CHENG Zhengfu1, ZHOU Mingjun2, YANG Bangchao3, ZHEN Ruilun1
1 College of Electronic and Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
2 The 49th Research Institute of China Electronics Technology Corporation, Harbin 150001, China
3 College of Electronic Science and Technology, University Electronic Science Technology of China, Chengdu 610054, China
下载:  全 文 ( PDF ) ( 2713KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯性能优异,应用前景广阔,是当今国际科技研究前沿之一。目前已有不少文献对石墨烯进行了研究,但对其热力学性质的研究还不深入和系统,尤其是对其非简谐特征的研究很少。深入和系统地研究石墨烯热力学性能的非简谐效应,确定它的热膨胀和热容量以及热导率随温度的变化规律,是目前的首要任务。
石墨烯的热膨胀、蓄热和导热性是非简谐效应最明显的性能,在超薄型高蓄热材料及可调节热管理系统等中有广泛应用。如何从实验和理论方面来确定这些性能随温度的变化规律,目前尚未得到解决。从理论上确定石墨烯热膨胀系数、热容量以及热导率随温度的变化规律并探讨出其非简谐效应,是当今研究的焦点。
本文提出了研究固体材料性质变化规律的非简谐效应理论方法,即通过严密的数学推导和数理论证来确定材料性质随温度的变化规律。为了确定石墨烯热膨胀系数、热容量以及热导率随温度的变化规律,需建立合理的物理模型,确定石墨烯的特性函数自由能。本文在石墨烯热膨胀、热容量和热导率的研究基础上,用固体物理理论,得到石墨烯低温热膨胀系数和热容量以及热导率随温度变化规律的解析式,计算并分析这些热力学量随温度变化的特点,探讨了原子非简谐振动对它们的影响,并与实验和其他文献的研究结果相比较。结果表明:石墨烯有低温负热膨胀现象,具有超高热传导性和大热容量蓄热、传热性能;温度愈高,非简谐效应愈突出;通过建立合理的物理模型并确定材料的特性函数自由能,可以较简便地探讨材料热力学性质随温度的变化规律和非简谐效应,其结果接近于实验结果。
本文综述了非简谐效应理论在研究石墨烯热膨胀和热容量以及热传导性能上的研究现状和笔者近期的研究成果,并对石墨烯后期的发展方向作出预测。在简述非简谐效应理论研究方法的基础上,论述了石墨烯的物理模型和自由能,并应用非简谐效应理论研究方法,对石墨烯低温负热膨胀、热容量和热导率随温度的变化规律进行了深入研究。最后对石墨烯热学性能非简谐效应的研究进行了展望,指出了五个待改进之处,为石墨烯材料的理论研究和应用提供有益的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程正富
周明军
杨邦朝
郑瑞伦
关键词:  非简谐效应  石墨烯  低温热膨胀  热容量  热传导    
Abstract: Graphene is one of the frontiers of international scientific and technological research because of its excellent properties and wide application prospects. At present, it has been researched in many literatures, but the thermodynamic properties of graphene have not been researched completely and systematically, especially, the anharmonic characteristics of graphene. It is an unsolved problem to research the anharmonic effect of graphene thermodynamic performance in depth and systematically for determine the law of thermal expansion, thermal capacity and thermal conductivity varying with temperature.
For graphene, its thermal expansion, heat storage and thermal conductivity are correlated to the non-harmonic vibrational effects, and it has been widely used in ultra-thin high-heat storage materials and adjustable thermal management systems. How to determine their variation with temperature from experiment and theory has been researched in many literatures, however this problem has not been solved. How to determine theoretically the law of graphene thermal expansion coefficient, thermal capacity and thermal conductivity changing with temperature, and further to explore the anharmonic effect is the focus of current research.
We propose the research method of anharmonic effect theory to study the law of solid material property change is an effective method. The theory can determine the law of material property change with temperature by rigorous mathematical deduction and mathematical theoretical reasoning. In order to determine the variation of thermal expansion coefficient, thermal capacity and thermal conductivity of graphene, establish reasonable physical model, and determine the free energy of characteristic function. On the basis of literature review the research status of graphene thermal expansion, thermal capacity and thermal conductivity, the analytical formulas of graphene thermal expansion coefficient at low temperature, thermal capacity and thermal conductivity varying with temperature are obtained by using solid state physics theory. The characteristics of these thermodynamic quantities varying with temperature are calculated and analyzed, and further discuss the influence of atomic anharmonic vibration. Finally, it is compared with other literature. The results demonstrate that graphene exhibits negative thermal expansion at low temperature, super-high heat conductivity and heat storage performance with large heat capacity, and the higher the temperature, the more prominent the anharmonic effect is. The results are closer to the experimental results than those obtained by other methods that establish a reasonable physical model and determining the free energy of the material’s characteristic function, and easier to discuss the law of thermodynamic properties of materials changing with temperature and the non-harmonic effect.
In this work, review the research status and recent achievements of anharmonic effect theory in graphene thermal expansion, thermal capacity and thermal conductivity, and its research direction is predicted. The physical model and free energy of graphene are discussed on the basis of a brief description of the theoretical research methods of anharmonic effect. After reviewing the research status, the research results of negative thermal expansion, thermal capacity and thermal conductivity of graphene at low temperature varying with temperature using the theoretical research methods of anharmonic effect. Finally, the research on the anharmonic effect of graphene thermal properties is prospected. Five aspects of the anharmonic effect need to be improved are pointed out, which can provide useful reference for the theoretical research and application of graphene materials.
Key words:  non-harmonic effect    graphene    low temperature thermal expansion    heat capacity    heat conduction
                    发布日期:  2020-04-27
ZTFLH:  O469  
基金资助: 国防工局可靠性项目(JSZL2014210B007);重庆市基础与前沿研究项目资助(cstc2015jcyjA40054)
通讯作者:  zhengrui@swu.edu.cn   
作者简介:  程正富,重庆文理学院电子电气工程学院教授、硕士研究生导师。1986年毕业于四川师范大学物理系,获得理学学士学位。主要从事凝聚态物理研究,在该领域发表学术论文20余篇,包括《物理学报》、Chinese Physics Letters、《原子与分子物理学报》等。
郑瑞伦,教授,硕士研究生导师, 国务院颁发的政府特殊津贴获得者。 从事专业:凝聚态物理.出版教材(主编)《热力学统计物理》等3部, 1999年获曾宪梓教育基金奖。先后主研国家自然科学基金项目2项,主持国家863科研项目的子课题1项,主研国家教育部重点科研项目1项,主研重庆市科委科研项目7项。2015年来主研重庆市科委科研项目和重庆市教委科学技术研究项目各1项,出版专著3部(第1作者):《固体理论及其应用》《大学生创业与社会适应》《石墨烯热学和电学性质研究》。发表学术论文100余篇,其中,SCI收录20余篇。“理论物理中某些前沿问题的研究”和“磁性薄膜的磁学及热动力学性质的解析研究”两项科研成果获重庆市自然科学三等奖。
引用本文:    
程正富, 周明军, 杨邦朝, 郑瑞伦. 石墨烯热学性能非简谐效应的研究进展[J]. 材料导报, 2020, 34(9): 9095-9100.
CHENG Zhengfu, ZHOU Mingjun, YANG Bangchao, ZHEN Ruilun. Research Progress on Non-harmonic Effect of Themal Properties of Graphene. Materials Reports, 2020, 34(9): 9095-9100.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050008  或          http://www.mater-rep.com/CN/Y2020/V34/I9/9095
1 Zheng R L, Wu X, Zhao S. Communications in Theoretical Physics,1992,18(4),411.
2 Zheng R L, Hu X Q. Acta Physica Sinica,1994,43(8),1254(in Chinese).
郑瑞伦,胡先权.物理学报,1994,43(8),1254.
3 Zheng R L. Communications in Theoretical Physics,1996,26,39.
4 Zheng R L. Journal of Southwest China Normal University: Natural Science Edition,1990(1),48(in Chinese).
郑瑞伦.西南师范大学学报:自然科学版,1990(1),48.
5 Cheng Z F, Long X X, Zheng R L. Acta Physica Sinca,2012,61(10),330(in Chinese).
程正富,龙晓霞,郑瑞伦.物理学报,2012,61(10),330.
6 Zheng R L, Tao Y. Acta Physica Sinca,2006,55(4),1942(in Chinese).
郑瑞伦,陶冶.物理学报,2006,55(4),1942.
7 Zheng R L, Liu J. Acta Photonica Sinica,2002,31(4),480(in Chinese).
郑瑞伦,刘俊.光子学报,2002,31(4),480.
8 Ren X, Kang W, Cheng Z, et al. Chinese Physics Letters,2016,33(12),126501.
9 Cheng Z F, Zheng R L. Chinese Physics Letters,2016,33(4),96.
10 Zheng R L, Xia J H, Yang W Y. Study on thermal and electrical properties of graphene materials, Southwest Jiaotong University Press,China,2019(in Chinese).
郑瑞伦,夏继宏,杨文耀.石墨烯材料热学和电学性能研究,西南交通大学出版社,2019.
11 Davydov S Y, Tikhonov S K. Semiconductors, 1996,30(6),514.
12 Davydov S Y. Physics of the Solid State,2009,51(10),2166.
13 Davydov S Y. Technical Physics Letters,2011,37(12),1161.
14 Davydov S Y. Physics of the Solid State,2012,54(4),875.
15 Cheng Z F, Zheng R L. Chinese Physics Letters,2016,33(4),96.
16 Cheng Z F, Zheng R L. Acta Physica Sinica,2016,65(10),181(in Chinese).
程正富,郑瑞伦.物理学报,2016,65(10):181.
17 Zheng R L, Hu X Q. Solid state theory and its applications, Southwest China Normal University Press, China,1996(in Chinese).
郑瑞伦,胡先权.固体理论及其应用,西南师范大学出版社,1996.
18 Ye Z Q, Cao B Y, Guo Z Y. Acta Physica Sinica,2014,63(15),154704(in Chinese).
叶振强,曹炳阳,过增元.物理学报,2014, 63(15),154704.
19 Ren X X, Shen F J, Lin X Y, et al. Acta Physica Sinica,2017,66(22),242(in Chinese).
任晓霞,申凤娟,林歆悠,等.物理学报,2017,66(22),242.
20 Mounet N, Marzari N. Physical Review B,2005,71(20),205214.
21 Bao W, Miao F, Chen Z, et al. Nature Nanotechnology,2009,4(9),562.
22 Zakharchenko K V, Katsnelson M IFasolino A. Physical Review Letters,2009,102(4),046808.
23 Jiang J W, Wang J S, Li B. Physical Review B Condensed Matter,2009,79(20),205418.
24 Pozzo M, Alfè D, Lacovig P, et al. Physical Review Letters,2011,106(13),135501.
25 Davydov S Y. Technical Physics Letters,2011,37(12),1161.
26 Yoon D, Son Y W, Cheong H. Nano Letters,2011,11(8),3227.
27 Ge X J, Yao K L, Lü J J. Physical Review B,2016,94(16),165433.
28 Jiang J W, Wang B S, Wang J S, et al. Journal of Physics: Condensed Matter,2015,27(8),083001
29 Nika D L, Pokatilov E P, Askerov A S, et al. Physical Review B,2009,79(15),155413.
30 Choe k H, Park K S, Kang B H, et al. Journal of Materials Science & Technology,2008,1,60.
31 M G Xia and S L Zhang. The European Physical Journal B,2011,84,385.
32 Xia M, Yang S, Zhang S. Physics Letters A,2011,375(42),3726.
33 Fong K C, Wollman E E, Ravi H, et al. Physical Review X,2013,3(4),041008.
34 Luo X H, Wang W, Chen D D, et al. Physica B: Condensed Matter,2016,491,51.
35 Saito K, Nakamura J, Natori A. Physical Review B,2007,76(11),3398.
36 Balandin A A, Ghosh S, Bao W, et al. Nano Letters,2008,8,902.
37 Ouyang T, Chen Y P, Yang K K, et al. Europhysics Letters,2009,88(2),28002.
38 Lindsay L, Broido D A, Mingo N. Physical Review B,2010,82(11),115427.
39 Bagri A, Kim S, Ruoff R S, et al. Nano Letters,2011,11(9),3917.
40 Yin Q, Huang R, Chen J, et al. Plastics,2004,33(4),79(in Chinese).
殷茜,黄锐,陈俊,等.塑料,2004,33(4),79.
41 Yang X X, Kubota M, He Z H, et al. Advances in New and Renewable Energy,2014(5),397(in Chinese).
杨希贤,漥田光宏,何兆红,等.新能源进展,2014(5),397.
42 Zhao Yuan, Huang Weijiu. Journal of Chongqing University of Technology (Natural Science),2011,25(7),64(in Chinese).
赵远,黄伟九.重庆理工大学学报(自然科学),2011,25(7),64.
43 Li Huanhuan, Peng Chuanqian, Liu Qiang. Journal of Chongqing University of Technology (Natural Science),2014,28(7),86(in Chinese).
李欢欢,彭川黔,刘强.重庆理工大学学报(自然科学),2014,28(7),86.
[1] 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
[2] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
[3] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[4] 王延伟, 卢维尔, 闫美菊, 夏洋. 化学气相沉积技术制备亚厘米尺寸单晶石墨烯的工艺研究[J]. 材料导报, 2020, 34(6): 6001-6005.
[5] 许壮, 高召顺, 韩立, 左婷婷, 伍岳, 肖立业, 孔祥东. 电子束热处理快速制备石墨烯技术[J]. 材料导报, 2020, 34(6): 6006-6009.
[6] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[7] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
[8] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[9] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[10] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[11] 贾颖. Li在石墨烯表面吸附与迁移的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 43-47.
[12] 方小利, 姚雪菲, 张宁, 杨红梅. 基于关键词共现网络法的中国石墨烯领域的研究热点分析[J]. 材料导报, 2019, 33(Z2): 78-82.
[13] 安文, 马建中, 徐群娜. 聚合物基水滑石-石墨烯复合阻燃材料的研究进展[J]. 材料导报, 2019, 33(Z2): 604-608.
[14] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[15] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed