Please wait a minute...
材料导报  2020, Vol. 34 Issue (9): 9086-9094    https://doi.org/10.11896/cldb.19040048
  无机非金属及其复合材料 |
3D打印石墨烯增强复合材料研究进展
仪登豪1, 冯英豪1, 张锦芳1, 李晓峰1,2, 刘斌1, 梁敏洁1, 白培康1
1 中北大学材料科学与工程学院,太原 030051
2 河南黄河旋风股份有限公司,长葛 461500
Research Progress of 3D-printed Graphene-reinforced Composites
YI Denghao1, FENG Yinghao1, ZHANG Jinfang1, LI Xiaofeng1,2, LIU Bin1, LIANG Minjie1, BAI Peikang1
1 School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
2 Henan Huanghe Whirlwand Co., Ltd., Changge 461500, China
下载:  全 文 ( PDF ) ( 11273KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,石墨烯优异的力学、热学性能以及大规模量产的可行性,使其成为了研究热点。将石墨烯作为增强相添加到金属、聚合物及陶瓷等材料中,有望提高复合材料的综合性能。针对复合材料性能优化的需求,各种用于制备石墨烯增强复合材料的制造方法应运而生。其中,3D打印技术兼具工艺灵活和制备的产品性能优异的优点,引起了学者的广泛关注。
然而,石墨烯自身密度低、比表面积大且易团聚,对复合材料的力学性能会造成不利影响,且其与陶瓷或金属基体的润湿性差,无法形成良好的界面结合。因此,如何将石墨烯均匀分散于复合材料中一直是学者们的研究重点,目前开发的分散方法有溶液混合法、熔体混合法、原位混合法和机械球磨法等。其中,将石墨烯分散于金属基粉体或陶瓷基粉体中的方法主要有溶液混合和机械球磨,石墨烯均匀分散于基体中不仅能提高复合材料的力学性能,还能改善其与基体的界面结合。研究较多的石墨烯增强聚合物复合材料混合方法主要有溶液混合、熔体混合和原位混合等,利用上述方法得到的三维样品力学性能、导热和导电性能均有较大提升,且应用于生物医学或储能领域表现出良好的生物或电学性能。
本文从金属基复合材料、聚合物基复合材料及陶瓷基复合材料三个方面综述了3D打印石墨烯增强复合材料的研究进展,从制粉和成形两个角度详细阐述了石墨烯增强复合材料在3D打印方面的应用。期待未来石墨烯增强复合材料可以广泛应用于能源器件、生物支架及航天航空等领域,为材料的研究拓展更广阔的空间。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
仪登豪
冯英豪
张锦芳
李晓峰
刘斌
梁敏洁
白培康
关键词:  3D打印  石墨烯增强复合材料  金属  高分子聚合物  陶瓷    
Abstract: In recent years, graphene has become a research hotspot on account of its outstanding mechanical and thermal properties and the feasibility of mass production. If it used as a reinforcing phase in materials such as metals, polymers, and ceramics that is promising for enhancing the comprehensive performance of the composites. To meet the ever-increasing demand for composites performance optimization, widely varieties of manufacturing methods for the preparing graphene-based composites have emerged, in which 3D printing technology can achieve the perfect combination of process flexibility and high performance products.
However, graphene has a low density and is easily agglomerated due to its large specific surface area, which will affect the mechanical properties of the composites. In addition, poor wettability of graphene with ceramic or metal matrix cannot ensure a good interfacial bonding between graphene and the matrix. Therefore, how to uniformly disperse graphene in composites has been the research direction of researchers. Currently, the commonly used disperse graphene methods include solution mixing method, melt mixing method, in-situ mixing method and mechanical ball mil-ling method, they are widely used in the preparation of metal, polymer and ceramic composites. Among them, mechanical properties of metal or ceramic composites with uniform dispersion graphene were improved, and they got a good incorporation at the interface. In addition, the more researched graphene-reinforced polymer composites’mechanical properties, thermal and electrical characteristics have been significantly enhanced, and they were used in biomedical or energy storage fields,showing better biological or electrical properties.
This paper reviews the research progress of 3D-printed graphene-based composites from three aspects: metal materials, polymers and ceramic matrix composites. The application of graphene-reinforced composites are elaborated in 3D printing from milling and forming. In the future, graphene-reinforced composites are expected to widely used in energy devices, biological scaffolds and aerospace fields, which will extend a broader space for material research.
Key words:  3D printing    graphene-reinforced composites    metal    polymer    ceramic
                    发布日期:  2020-04-27
ZTFLH:  TB333  
基金资助: 国家自然科学基金(51804280);山西省自然科学基金(201701D221086; 201801D221146);山西省科技重大专项项目(20181101009);山西省教育厅科技创新项目(201802076);山西省回国留学人员科研资助项目(2017-095);山西省国际合作项目(201603D421024);中北大学青年学术带头人支持计划(QX201802)
通讯作者:  lxf@nuc.edu.cn   
作者简介:  仪登豪,2017年7月毕业于中北大学,获得理学学士学位。现为中北大学材料科学与工程学院硕士研究生,在李晓峰副教授的指导下进行研究。目前主要研究领域为激光选区熔化(SLM)制备石墨烯增强的镍基复合材料。
李晓峰,中北大学材料科学与工程学院副教授、硕士研究生导师。2009年6月本科毕业于中南大学粉体材料科学与工程学院,2016年6月在中南大学粉末冶金国家重点实验室取得博士学位。主要从事粉末冶金、增材制造、金属基复合材料的设计及开发的研究工作。
引用本文:    
仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
YI Denghao, FENG Yinghao, ZHANG Jinfang, LI Xiaofeng, LIU Bin, LIANG Minjie, BAI Peikang. Research Progress of 3D-printed Graphene-reinforced Composites. Materials Reports, 2020, 34(9): 9086-9094.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040048  或          http://www.mater-rep.com/CN/Y2020/V34/I9/9086
1 Novoselov K S, Geim A K, Morozov S V, et al. Science,2004,306(5696),666.
2 Zhang Y Z, Mo G Q, Li X W, et al. Journal of Power Sources,2011,196(13),5402.
3 Huang X, Qi X, Boey F, et al. Chemical Society Reviews,2012,41(2),666.
4 Kasar A K, Xiong G, Menezes P L. JOM,2018,70(6),829.
5 Stoller M D, Park S, Zhu Y, et al. Nano Letters,2008,8(10),3498.
6 Balandin A A, Ghosh S, Bao W, et al. Nano Letters,2008,8(3),902.
7 Kasar A K, Xiong G P, Menezes P L. JOM,2018,70(6),829.
8 Herzog D, Seyda V, Wycisk E, et al. Acta Materialia,2016,117(15),371.
9 Zhou B, Zhou J, Li H, et al. Materials Science & Engineering A,2018,724(2),1.
10 Ngo T D, Kashani A, Imbalzano G, et al. Composites Part B: Enginee-ring,2018,143,172.
11 Culmone C, Smit G, Breedveld P. Additive Manufacturing,2019,27,461.
12 Chen Z, Li Z, Li J, et al. Journal of the European Ceramic Society,2019,39(4),661.
13 Zhao Z Y, Li L, Tan L, et al. Materials,2018,11(9),1525.
14 Sherrell P C, Mattevi C. Materials Today,2016,19(8),428.
15 Bhadauria A, Singh L K, Laha T. Journal of Alloys and Compounds,2018,748,783.
16 Jia Y, He H, Geng Y, et al. Composites Science & Technology,2017,145,55.
17 Eckel Z C, Chaoyin Z, Martin J H, et al. Science,2016,351(6268),58.
18 Mu X N, Cai H N, Zhang H M, et al. Materials & Design,2018,140,431.
19 Zhang D, Zhan Z. Journal of Alloys and Compounds,2016,658,663.
20 Hu Z, Chen F, Xu J, et al. Composites Part B: Engineering,2018,134,133.
21 Milton S, Duchosal A, Chalon F, et al. Journal of Manufacturing Processes,2019,38,256.
22 Greer C, Nyca A, Noakes M, et al. Additive Manufacturing,2019,27,159.
23 Lewandowski J J, Seifi M. Annual Review of Materials Research,2016,46(1),151.
24 Hu Z, Chen F, Xu J, et al. Journal of Alloys and Compounds,2018,746,269.
25 Tan L. Preparation of aluminized graphene/aluminum matric composite powder and the selective laser melting. Master’s Thesis, North University of China, China,2018(in Chinese).
谭乐.镀铝石墨烯/铝基复合粉末制备及其选择性激光熔化成形.硕士学位论文,中北大学,2018.
26 Zhou W, Dong M, Zhou Z, et al. Carbon,2019,141,67.
27 Marchese G, Colera X G, Calignano F, et al. Advanced Engineering Materials,2017,19(3),1600635.
28 Deng P, Yao C, Feng K, et al. Surface & Coatings Technology,2017,335,334.
29 Hu Z, Tong G, Lin D, et al. Journal of Materials Processing Technology,2016,231,143.
30 Xiao W H, Lu S Q, Wang Y C, et al. Transactions of Nonferrous Metals Society of China,2018,28(10),1958.
31 Hu Z, Saei M, Tong G, et al. Journal of Alloys and Compounds,2016,688,438.
32 Wang Y, Shi J, Lu S, et al. Journal of Manufacturing Science and Engineering,2017,139(4),1005.
33 Lin D, Richard Liu C, Cheng G J. Acta Materialia,2014,80,183.
34 Lin D, Motlag M, Saei M, et al. Acta Materialia,2018,150,360.
35 Li M, Wu X, Yang Y, et al. Materials Characterization,2018,143,197.
36 Wang X, Jiang M, Zhou Z, et al. Composites Part B: Engineering,2017,110,442.
37 Wang J, Jin X, Li C, et al. Chemical Engineering Journal,2019,370,831.
38 Lin D, Jin S, Zhang F, et al. Nanotechnology,2015,26(43),434003.
39 Bing X, Zou Y. Composites Science & Technology,2018,157,78.
40 Compton B G, Hmeidat N S, Pack R C, et al. JOM,2017,70(3),292.
41 Chiappone A, Roppolo I, Naretto E, et al. Composites Part B: Enginee-ring,2017,124,9.
42 Kholkhoev B C, Buinov A S, Kozlova M N, et al. Russian Journal of Applied Chemistry,2018,91(3),392.
43 Zhu D, Ren Y, Liao G, et al. Journal of Applied Polymer Science,2017,134(39),45332.
44 Singh R, Sandhu G S, Penna R, et al. Materials,2017,10(8),881.
45 Wei X, Li D, Jiang W, et al. Scientific Reports,2015,5,11181.
46 Manapat J Z, Mangadlao J D, Tiu B D, et al. ACS Applied Materials & Interfaces,2017,9(11),10085.
47 Fu K, Wang Y, Yan C, et al. Advanced Materials,2016,28(13),2587.
48 Kai S, Mei H, Li B, et al. Advanced Energy Materials,2018,8(4),1527.
49 Garcia R V, Garcia-tunon E, Botas C, et al. ACS Applied Materials & Interfaces,2017,9(42),37136.
50 Xiao Y, Yang J, Qian F, et al. International Journal of Lightweight Materials & Manufacture,2018,1(2),96.
51 Di Z, Chi B, Li B, et al. Synthetic Metals,2016,217,79.
52 Foster C W, Down M P, Zhang Y, et al. Scientific Reports,2017,7,42233.
53 Kai H, Yang J, Dong S, et al. Carbon,2018,130,1.
54 Vernardou D, Vasilopoulos K C, Kenanakis G. Applied Physics A,2017,123(10),623.
55 Aahari A, Marzbanrad E, Yilman D, et al. Carbon,2017,119,257.
56 Cheng Z, Landish B, Chi Z, et al. Materials Science and Engineering: C,2018,82,244.
57 Wang W, Caetano G, Ambler W S, et al. Materials,2016,9(12),992.
58 Misra S K, Ostadhossein F, Babu R, et al. Advanced Healthcare Mate-rials,2017,6(11),1700008.
59 Chen Q, Mangadlao J D, Wallat J, et al. ACS Applied Materials & Interfaces,2017,9(4),4015.
60 Shuai C, Feng P, Gao C, et al. RSC Advances,2015,5,25416.
61 Sayyar S, Gambhir S, Chung J, et al. Nanoscale,2017,9(5),2038.
62 Sayyar S, Bjorninen M, Haimi S, et al. ACS Applied Materials & Interfaces,2016,8(46),31916.
63 Qian Y, Zhao X, Han Q, et al. Nature Communications,2018,9(1),323.
64 Bustillos J, Montero D, Nautiyal P, et al. Polymer Composites,2017,39(11),3877.
65 Hwa L C, Rajoo S, Noor A M, et al. Current Opinion in Solid State and Materials Science,2017,21(6),323.
66 Kunchala P, Kappagantula K. Materials & Design,2018,155,443.
67 Tubio C R, Rama A, Gómez M, et al. Ceramics International,2017,44(5),5760.
68 Yang J S, Huang K, You X, et al. Materials China,2018,37(8),32(in Chinese).
杨金山,黄凯,游潇,等.中国材料进展,2018,37(8),32.
69 Román-Manso B, Moyano J J, Pérez-coll D, et al. Journal of the Euro-pean Ceramic Society,2017,38(5),2265.
70 Zhong J, Zhou G X, He P G, et al. Carbon,2017,117,421.
71 Azhari A, Toyserkani E, Villain C. International Journal of Applied Ceramic Technology,2015,12(1),8.
72 Zhang Y, Zhai D, Xu M, et al. Journal of Materials Chemistry B,2016,4(17),2874.
73 Zhang Y, Zhai D, Xu M, et al. Biofabrication,2017,9(2),025037.
74 Shuai C, Liu T, Gao C, et al. Journal of Alloys and Compounds,2016,655(15),86.
[1] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[2] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[3] 马茸茸, 张电, 刘一军, 刘静, 杨晓凤, 李延军, 马爱琼. 多孔氮化硅陶瓷的研究进展及构效关系中的矛盾平衡[J]. 材料导报, 2020, 34(9): 9101-9109.
[4] 刘钊扬, 熊柏青, 张永安, 李志辉, 李锡武, 闫丽珍, 温凯. 汽车车身板用6A16铝合金拉深成形金属流动和微观组织相关性研究[J]. 材料导报, 2020, 34(8): 8119-8125.
[5] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
[6] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[7] 刘国平, 王渠东, 蒋海燕. 铜/铝双金属复合材料研究新进展[J]. 材料导报, 2020, 34(7): 7115-7122.
[8] 肖华强, 陈禹伽, 陈维平, 何佳容, 赵思皓. 材料在铝液中熔蚀-磨损行为的研究进展[J]. 材料导报, 2020, 34(7): 7123-7129.
[9] 张浩, 朱永昌, 崔竹, 韩勖, 耿安东. 钾钠物质的量比对LAS光敏微晶玻璃介电性能的影响[J]. 材料导报, 2020, 34(6): 6020-6023.
[10] 林启权, 周行, 董文正, 钦椿凯. CoO和Cr2O3复合掺杂对金属陶瓷的致密化及抗高温氧化性的影响[J]. 材料导报, 2020, 34(6): 6044-6048.
[11] 周蕊, 刘众旺, 张建国, 刘兵飞, 杜春志. 基于DPC-CZM混合模型的金属粉末压坯裂纹三维数值模拟[J]. 材料导报, 2020, 34(6): 6151-6155.
[12] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[13] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[14] 张娜, 韩筱玉, 梁金生, 李艳, 孟军平, 张红. 非金属矿物材料脱霉性能评价方法研究进展[J]. 材料导报, 2020, 34(5): 5078-5084.
[15] 杨珏莹, 陈煜, 赵琳, 张子涵, 杨威, 刘媛, 彭克林, 王雅伦. 基于动态可逆非共价体系的自愈合水凝胶构建方法研究进展[J]. 材料导报, 2020, 34(5): 5133-5141.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed