Please wait a minute...
材料导报  2020, Vol. 34 Issue (6): 6151-6155    https://doi.org/10.11896/cldb.19040016
  金属与金属基复合材料 |
基于DPC-CZM混合模型的金属粉末压坯裂纹三维数值模拟
周蕊1, 刘众旺2, 张建国2, 刘兵飞1, 杜春志1
1 中国民航大学航空工程学院,天津 300300;
2 天津科技大学机械工程学院,天津 300222
Three-dimensional Numerical Simulation of Green Metal Powder Compacts Crack Based on DPC-CZM Mixed Model
ZHOU Rui1, LIU Zhongwang2, ZHANG Jianguo2, LIU Bingfei1, DU Chunzhi1
1 School of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China;
2 School of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
下载:  全 文 ( PDF ) ( 4738KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 消除和控制金属粉末压坯裂纹对生产高质量粉末冶金零件具有指导作用。本工作将修正的Drucker-PragerCap(DPC)模型与内聚力模型(CZM)相结合,分别定义金属粉末压坯实体单元与零厚度内聚力单元的力学行为。通过巴西圆盘和单轴压缩试验获取压坯断裂性能参数,编写Python程序在实体单元中批量插入零厚度内聚力单元,模拟金属粉末压坯在外载荷作用下的拉伸和剪切裂纹以及裂纹扩展过程,并与实验结果进行对比分析。研究结果表明,采用指数型内聚力本构模型与DPC模型混合,可更准确地描述压坯裂纹损伤区的变化,与零厚度内聚力单元相关的裂纹扩展过程与实验结果更为一致。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周蕊
刘众旺
张建国
刘兵飞
杜春志
关键词:  金属粉末压坯  修正的Drucker-Prager Cap模型  内聚力模型  裂纹  数值模拟    
Abstract: Elimination and control of green metal powder compacts cracks can guide the production of high-quality powder metallurgy parts. In this work, the modified Drucker-Prager Cap (DPC) model and the cohesive model (CZM) are combined to define the mechanical behavior. The modified DPC model is used to define the solid elements, the cohesive model is used to define the zero-thickness element. Through Brazilian disc and uniaxial compression test, the fracture performance parameters of the blank were obtained, then the Python program was programmed to insert zero-thickness cohesive element in the solid element. The tensile and shear crack of green metal powder compacts under external load are simulated and compared with the experimental results. The results show that combining the exponential cohesive zone constitutive model with the DPC model can be used to describe the change of crack damage zone more accurately, which was also able to reflect the green compacts damage process and crack propagation associated with the zero-thickness elements.
Key words:  green metal powder compacts    modified Drucker-Prager Cap model    cohesive zone model    crack    numerical simulation
                    发布日期:  2020-03-12
ZTFLH:  TF12  
基金资助: 国家青年科学基金(51505483;51608522);中国民航大学科研启动基金(2013QD13X)
作者简介:  周蕊,女,中国民航大学副教授,天津大学机械工程专业博士。研究方向:塑性成形理论及数值模拟。先后主持或参与国家自然科学基金青年项目等各级项目多项,发表SCI、EI、北大核心期刊论文多篇;刘兵飞,男,中国民航大学副教授,硕士研究生导师,北京交通大学固体力学专业博士。研究方向:智能材料与结构力学。先后主持或参与各级项目多项,发表SCI、EI、北大核心期刊论文多篇。
引用本文:    
周蕊, 刘众旺, 张建国, 刘兵飞, 杜春志. 基于DPC-CZM混合模型的金属粉末压坯裂纹三维数值模拟[J]. 材料导报, 2020, 34(6): 6151-6155.
ZHOU Rui, LIU Zhongwang, ZHANG Jianguo, LIU Bingfei, DU Chunzhi. Three-dimensional Numerical Simulation of Green Metal Powder Compacts Crack Based on DPC-CZM Mixed Model. Materials Reports, 2020, 34(6): 6151-6155.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040016  或          http://www.mater-rep.com/CN/Y2020/V34/I6/6151
1 Sean Garner, Elaine Ruiz, John Strong, et al.Powder Technology, 2014,264,114.
2 Melnikov A,Sivagurunathan K,Guo X,et al. NDT & E International,2017,86,140.
3 Zenger D C,Cai H. International Journal of Powder Metallurgy,1998,34 (4),33.
4 Pär Jonsén, Hans-Åke Häggblad, Gustaf Gustafsson.Powder Technology,2015,284, 496.
5 Tahir S M,Ariffin A K,Anuar M S. Powder Technology, 2010,202 (1-3),162.
6 Es-Saheb M H. Journal of Materials Processing Technology, 2006, 178, 143.
7 Simulia Inc. Abaqus 6.14 theory manual, Software Corporation Press, USA, 2014.
8 Zhou Rui, Li Lulu, Xie Dong, et al. Materials Review B:Research Papers, 2018,32 (3),1020 (in Chinese).
周蕊,李璐璐,谢东,等.材料导报:研究篇,2018, 32 (3),1020.
9 Dugdale D S. Journal of the Mechanics and Physics of Solids, 1960, 8,100.
10 Barrenblatt G I. Advances in Applied Mechanics, 1962, 7,55.
11 Hillerborg A, Modeer M, Petersson P E. Cement and Concrete Research,1976,6,773.
12 Wu Z J, Liang X, Liu Q S.Engineering Geology, 2015,197,198.
13 Needleman A. Journal of the Mechanics and Physics of Solids, 1990,38 (33),289.
14 Song S H, Paulion G H, Buttlar W G. In: Conference Record of TRB Annual Meeting. Washington D.C,2005, pp.155.
15 Jiang Hongxiang, Meng Deguang. Engineering Fracture Mechanics, 2018, 199, 280.
16 Fahad M K. Journal of Materials Science,1996,31 (14),3723.
17 Brewin P R, Coube O, Doremus P, et al. Modelling of powder die compaction, Engineering Materials and Processes Press, UK, 1998.
[1] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[2] 陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119.
[3] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[4] 高旭东, 邵永波, 谢丽媛, 杨冬平. X56海底管道在腐蚀环境下疲劳裂纹扩展过程预测[J]. 材料导报, 2020, 34(2): 2123-2130.
[5] 崔巍, 宋日悬, 肖忠民, 冯子明, 冷德成, 董康兴, 张强, 杨志军. X80油气管道焊缝双裂纹干涉效应多场耦合数值模拟方法[J]. 材料导报, 2020, 34(2): 2131-2136.
[6] 余雷, 王辉, 单兵, 姚炜峰, 唐姝文, 张俊, 陈业高. 低雾化气压对喷射成形雾化过程的影响[J]. 材料导报, 2019, 33(Z2): 463-467.
[7] 刘伟东, 薄旭盛, 何成. 基于轻量化材料防撞梁的低速碰撞性能研究[J]. 材料导报, 2019, 33(Z2): 468-472.
[8] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[9] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[10] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[11] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[12] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[13] 侯艳, 程从前, 赵杰, 冯雪, 李然, 闵小华. 拉应力对2205双相不锈钢临界点蚀温度和点蚀行为的影响[J]. 材料导报, 2019, 33(6): 1022-1026.
[14] 崔巍, 张煜杭, 张强, 冯子明. 考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法[J]. 材料导报, 2019, 33(6): 1036-1041.
[15] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed