Please wait a minute...
材料导报  2019, Vol. 33 Issue (6): 1022-1026    https://doi.org/10.11896/cldb.201906020
  金属与金属基复合材料 |
拉应力对2205双相不锈钢临界点蚀温度和点蚀行为的影响
侯艳, 程从前, 赵杰, 冯雪, 李然, 闵小华
大连理工大学材料科学与工程学院,大连 116024
Effect of Tensile Stress on Critical Pitting Temperature and Pitting Corrosion Behavior of 2205 Duplex Stainless Steel
HOU Yan, CHENG Congqian, ZHAO Jie, FENG Xue, LI Ran, MIN Xiaohua
School of Material Science and Engineering, Dalian University of Technology, Dalian 116024
下载:  全 文 ( PDF ) ( 2214KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 采用外加恒电位方法研究拉应力对2205双相不锈钢临界点蚀温度(CPT)的影响,结合动电位极化、恒电位极化及电化学阻抗谱(EIS)等方法分析了不同应力典型温度下的电化学腐蚀特征。结果表明,尽管拉应力降低了2205双相不锈钢的CPT,但在140 MPa应力下即便在85 ℃时也没有发生点蚀。电化学分析表明,在CPT以下应力降低2205双相不锈钢击破电位(Eb),恒电位极化时试样表面仍处于钝化状态;在CPT以上会发生稳态点蚀。随温度升高,Eb明显降低。140 MPa应力下试样未发生点蚀的原因可能是,试样表面的微裂纹受应力作用,在极化过程中发生裂尖区裂纹扩展和再次钝化,腐蚀特征并不能表征其耐蚀性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯艳
程从前
赵杰
冯雪
李然
闵小华
关键词:  双相不锈钢  拉应力  临界点蚀温度  击破电位  微裂纹  点蚀行为    
Abstract: The effect of tensile stress on the critical pitting temperature (CPT) for 2205 duplex stainless steel (SS) was investigated using potentiostatic measurements. Potentiodynamic polarization, potentiostatic polarization, electrochemical impedance spectroscopy (EIS) were adopted to study the electrochemical corrosion behavior of 2205 duplex SS subjected to different tensile stresses at 40 ℃ and 60 ℃. The results confirmed the inverse correlation between CPT and tensile stress, with a singular point of 140 MPa, under which no pitting was observed even at 85 ℃. Potentiodynamic polarization, potentiostatic polarization and EIS indicated that below CPT the breakdown potential (Eb) and the stability of passive film declined with a tensile stress was exerted on the specimen. And moreover, the steel surface maintained in passive status during the potentiostatic polarization process. At a temperature above the CPT, stable pitting occured. With the increasing temperature, the decrease of Eb became more noticeable. The specimen which subjected to 140 MPa tensile stress underwent no pitting. This may be attributed to the crack-tip expansion and subsequent repassivation of the microcracks on surface of 2205 duplex SS under the effect of tensile stress and polarization. And in this circumstance, the electrochemical characteristic cannot denote its pitting corrosion resistance.
Key words:  duplex stainless steel    tensile stress    critical pitting temperature    breakdown potential    microcrack    pitting behavior
               出版日期:  2019-03-25      发布日期:  2019-04-03
ZTFLH:  TG172  
基金资助: 国家自然科学基金(51571051);辽宁重大装备制造协同创新中心资助项目
作者简介:  侯艳,于2016年9月在大连理工大学硕博连读,主要从事不锈钢耐腐蚀行为的研究。程从前,大连理工大学,材料科学与工程学院,副教授。
引用本文:    
侯艳, 程从前, 赵杰, 冯雪, 李然, 闵小华. 拉应力对2205双相不锈钢临界点蚀温度和点蚀行为的影响[J]. 材料导报, 2019, 33(6): 1022-1026.
HOU Yan, CHENG Congqian, ZHAO Jie, FENG Xue, LI Ran, MIN Xiaohua. Effect of Tensile Stress on Critical Pitting Temperature and Pitting Corrosion Behavior of 2205 Duplex Stainless Steel. Materials Reports, 2019, 33(6): 1022-1026.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201906020  或          http://www.mater-rep.com/CN/Y2019/V33/I6/1022
1 Hwang Heejoon, Park Yongsoo. Materials Transactions,2009,50(6),1548.
2 Shi L, Zheng Z J, Gao Y. Materials Review A:Review Papers,2015,29(12),79(in Chinese).
石林, 郑志军, 高岩. 材料导报:综述篇,2015,29(12),79.
3 Deng B, Jiang Y, Gong J, et al. Electrochimica Acta,2008,53(16),5220.
4 Laycock N J, Moayed M H, Newman R C. Journal of the Electrochemical Society,1998,145(8),2622.
5 Ebrahimi N, Momeni M, Moayed M H, et al. Corrosion Science,2011,53(2),637.
6 Deng B, Wang Z, Jiang Y, et al. Electrochimica Acta,2009,54(10),2790.
7 Moayed M H, Laycock N J, Newman R C. Corrosion Science,2003,45(6),1203.
8 Vignal V, Ba D, Zhang H, et al. Corrosion Science,2013,68(3),275.
9 Ovarfort R. Corrosion Science,1989,29(8),987.
10 Zakeri M, Nakhaie D, Naghizadeh M, et al. Corrosion Science,2015,93,234.
11 Zhang L, Jiang Y, Deng B, et al. Journal of Applied Electrochemistry,2009,39(10),1703.
12 Vignal V, Mary N, Valot C, et al. Electrochemical and Solid-State Letters,2004,7(4),39.
13 Wang H, Han E H. Electrochimica Acta,2013,90(5),128.
14 Yang J, Wang Q, Guan K. International Journal of Pressure Vessels & Piping,2013,110(10),72.
15 Mudali U K, Shankar P, Ningshen S, et al. Corrosion Science,2002,44(10),2183.
16 Zhang Z X, Lin G, Xu Z. Journal of Materials Processing Technology,2008,205(1-3),419.
17 Andersen H, Olsson C O A, Wegrelius L. Materials Science Forum, 1998,289-292, 925.
18 Deng B, Jiang Y, Gong J, et al. Electrochimica Acta,2008,53(16),5220.
19 Salinas-Bravo V M, Newman R C. Corrosion Science,1994,36(1),67.
20 Anita T, Pujar M G, Shaikh H, et al. Corrosion Science,2006,48(9),2689.
21 Zhang Y, Poursaee A. Anti-Corrosion Methods and Materials,2015,62(6),363.
22 Navaï F, Debbouz O. Journal of Materials Science,1999,34(5),1073.
23 Navaï F. Journal of Materials Science,1995,30(5),1166.
24 Li W T, Pang R S, Zhao W H, et al. The Chinese Journal of Nonferrous Metals,2015,25(12),3282(in Chinese).
李文婷, 潘若生, 赵苇杭,等.中国有色金属学报,2015,25(12),3282.
[1] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[2] 向红亮, 刘春育, 邓丽萍, 张伟, 任建斌. 固溶温度对节约型双相不锈钢组织及性能的影响[J]. 材料导报, 2019, 33(16): 2759-2764.
[3] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[4] 卢成壮,李静媛,高智君,张泰然,陈雨来,王一德. 0Cr25Ni7Mo4N双相不锈钢高温热塑性及组织演变[J]. 《材料导报》期刊社, 2018, 32(10): 1639-1644.
[5] 庞宗旭, 朱荣, 陈培敦, 王俊海. 镁铝尖晶石固溶体成分对TiN析出行为的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 118-124.
[6] 王俊颜, 边晨, 肖汝诚, 马骉, 刘国平. 常温养护型超高性能混凝土的圆环约束收缩性能*[J]. CLDB, 2017, 31(23): 52-57.
[7] 卢盼盼, 王爱琴, 谢敬佩, 王文焱. 时效处理对4A双相不锈钢σ相析出及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 76-80.
[8] 邱振平, 张英杰, 董 鹏, 夏书标, 姚 遥. LiNi0.8Co0.15Al0.05O2正极活性材料的衰减机理及改性措施[J]. 材料导报, 2017, 31(1): 18-24.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed