Please wait a minute...
材料导报  2017, Vol. 31 Issue (1): 18-24    https://doi.org/10.11896/j.issn.1005-023X.2017.01.003
  材料综述 |
LiNi0.8Co0.15Al0.05O2正极活性材料的衰减机理及改性措施
邱振平1,张英杰1,2, 董 鹏2,夏书标2,姚 遥2
1 昆明理工大学材料科学与工程学院, 昆明 650093;
2 云南省先进电池及材料工程实验室, 昆明 650093
Degradation Analysis of LiNi0.8Co0.15Al0.05O2 Positive-electrode Active Material and Its Modification Methods
QIU Zhenping1, ZHANG Yingjie1,2, DONG Peng2, XIA Shubiao2, YAO Yao2
1 Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093;
2 Engineering Laboratory for Advanced Batteries and Materials of Yunnan Province, Kunming 650093
下载:  全 文 ( PDF ) ( 1882KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高功率、高容量的LiNi0.8Co0.15Al0.05O2(NCA)正极锂离子电池在电动汽车和定置储能电池等行业中具有非常广阔的应用前景。为使其更具商业竞争力,NCA锂电池的使用寿命至少需要延长至15年,这对现行技术而言是一个很大的挑战。因此,明确NCA锂电池在循环和储存过程中性能衰减机理是延长NCA动力电池使用寿命的关键。大量研究表明正极表面膜的形成、表面盐岩结构类NiO相的出现、显微裂纹的产生、表面导电碳基体的恶化等因素是NCA动力电池衰减的主要原因。通过常规原子掺杂、表面包覆等方法在一定程度上能有效抑制正极材料的恶化,延长锂离子电池的使用寿命。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邱振平
张英杰
董 鹏
夏书标
姚 遥
关键词:  NCA正极材料  SEI膜  类NiO相  显微裂纹  改性措施    
Abstract: LiNi0.8Co0.15Al0.05O2 lithium ion batteries have extremely broad application prospect in electric vehicles and statio-nary storage batteries due to its high capacity and high power. To be more economically attractive, it requires the batteries to have a long life during both storage and operation, typically more than 15 years. However, it still remains a challenge to achieve this goal, that is to say the short service life of LIB is a technological bottleneck for its application in electronic vehicles. Therefore, investigating the degradation mechanism of lithium-ion cell plays an important role in the achievement of long life for lithium-ion cell. Extensive research has shown that the formation of surface film, appearance of a NiO-like resistance layer with Fm3m rock structure, the micro-crack generation and deterioration of conductive carbon matrix are considered to be the dominant factors for the degradation of capacity and power. The deterioration of the cathode can be suppressed to a certain degree by the conventional modification methods, such as atomic doping, surface coating.
Key words:  NCA positive-electrode    SEI film    NiO-like phase    micro-crack    modifying methods
               出版日期:  2017-01-10      发布日期:  2018-05-02
ZTFLH:  TB321  
基金资助: 国家自然科学基金(51364021;51264016)
作者简介:  邱振平:男,1990年生,博士研究生,主要从事锂离子电池正极NCA材料研究 张英杰:通讯作者,女,1963年生,教授,博士研究生导师,研究方向为电化学 E-mail:zyjkmust@126.com 董鹏:通讯作者,男,1980年生,博士,讲师,研究方向为电化学 E-mail:dongpeng2001@126.com
引用本文:    
邱振平, 张英杰, 董 鹏, 夏书标, 姚 遥. LiNi0.8Co0.15Al0.05O2正极活性材料的衰减机理及改性措施[J]. 材料导报, 2017, 31(1): 18-24.
QIU Zhenping, ZHANG Yingjie, DONG Peng, XIA Shubiao, YAO Yao. Degradation Analysis of LiNi0.8Co0.15Al0.05O2 Positive-electrode Active Material and Its Modification Methods. Materials Reports, 2017, 31(1): 18-24.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.01.003  或          http://www.mater-rep.com/CN/Y2017/V31/I1/18
1 Ruan Z W, Zhu Y M, Teng X G. Effect of pre-thermal treatment on lithium storage performance of LiNi0.8Co0.15Al0.05O2[J]. J Mater Sci,2016,51:1400.
2 Broussely M, Biensan P, Bonhomme F, et al. Main aging mechanisms in Li ion batteries[J]. J Power Sources,2005,146:90.
3 Abraham D P, Reynolds E M, Sammann E. Aging characteristics of high-power lithium-ion cells with LiNi0.8Co0.15Al0.05O2 and Li4/3-Ti5/3O4 electrodes[J]. Electrochim Acta,2005,51:502.
4 Chen C H, Liu J, Amine K. Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries[J]. J Power Sources,2001,96:321.
5 Andresson A M, Abraham D P, Haasch R, et al. Surface characte-rization of electrodes from high power lithium-ion batteries[J]. J Electrochem Soc,2002,149:A1358.
6 Aurbach D, markovsky B, Levi M D, et al. New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries[J]. J Power Sources,1999,81-82:95.
7 Aurbach D, Gamolsky K, Markovsky B, et al. The study of surface phenomena related to electrochemical lithium intercalation into LixMOy host materials(M=Ni, Mn) [J]. J Electroche Soc,2000,4:1322.
8 Osrrovskii D, Rpnci F, Scrosati B, et al. A FTIR and Raman study of spontaneous reactions occurring at the LiNiyCo(1-y)O2 electrode/non-aqueous electrolyte interface[J]. J Power sources,2001,94:183.
9 Saito Y, Shikano M, Kobayashi H. State of charge (SOC) depen-dence of lithium carbonate on LiNi0.8Co0.15Al0.05O2 electrode for lithium-ion batteries[J]. J Power Sources,2011,196:6889.
10 Song S W, Zhuang G V, Ross P N, et al. A study of surface film from formation on LiNi0.8Co0.15Al0.05O2 cathodes using attenuated total reflection infrared spectroscopy[J]. J Electrochem Soc,2004,151:A1162.
11 Edstrom K, Gustafsson T, Thomas J O. The cathode-electrolyte interface in the Li-ion battery[J]. Electrochim Acta,2004,50:397.
12 Aurbach D, Daroux M L, Faguy P W, et al. Identification of surface films formed on lithium in propylene carbonate solutions[J]. J Electrochem Soc,1987,134:1611.
13 Mori D, Kobayashi H, Shikano M, et al. Bulk and surface structure investigation for the positive electrodes of degraded lithium-ion cell after storage test using X-ray absorption near-edge structure mea-surement[J]. J Power Sources,2009,189:676.
14 Bloom I, Jones S A, Polzin E G, et al. Mechanisms of impedance rise in high-power lithium-ion cells[J]. J Power Sources,2002,111:152.
15 Abraham D P, Liu J, Chen C H, et al. Diagnosis of power fade mechanisms in high-power lithium-ion cells[J]. J Power Sources,2003,119-121:511.
16 Rahman M K, Saito Y. Investigation of positive electrodes after cycle testing of high-powerLi-ion battery cells Ⅲ: An approach to the power fade mechanism using FT-IR-ATR[J]. J Power Sources,2007,174:889.
17 Shim J, Kostecki R, Richardson T, et al. Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature[J]. J Power Sources,2002,112:222.
18 Muto S, Tatsumi K, Sasaki T, et al. Mapping of heterogeneous chemical states of lithium in a LiNiO2-based active material by electron energy-loss spectroscopy[J]. Electrochem Solid State Lett,2010,13:A115.
19 Dey A N, Sullivan B P. The electrochemical decomposition of propylene carbonate on graphite[J]. J Electrochem Soc,1970,117:222.
20 Watanabe S, Kinoshita M, Hosokawa T, et al. Capacity fade of LiAlyNi1-x-yCoxO2 cathode for lithium-ion batteries during accele-rated calendar and cycle life tests (surface analysis of LiAlyNi1-x-y-CoxO2 cathode after cycle tests in restricted depth of discharge ranges) [J]. J Power Sources,2014,28:210.
21 Shikano M, Kobayashi H, Koike S, et al. Investigation of positive electrodes after cycle testing of high-power Li-ion battery cells Ⅱ:An approach to the power fading mechanism using hard X-ray photoemission spectroscopy[J]. J Power Sources,2007,174:795.
22 Bak S M, Nam K W, Chang W Y, et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials[J]. Chem Mater,2013,25:337.
23 Abraham D P, Twesten R D, Balasurbramanian M, et al. Microscopy and spectroscopy of lithium nickel oxide-based particles used in high power lithium-ion cells[J]. J Electrochem Soc,2003,150:A1450.
24 Muto S, Sasano Y, Tatsumi K, et al. Capacity-fading mechanisms of LiNiO2-based lithium-ion batteries Ⅱ. Diagnostic analysis by electron microscopy and spectroscopy[J]. J Electroichem Soc,2009,16:A37.
25 Zheng S, Huang R, Makimura Y, et al. Microstructural changes in LiNi0.8Co0.15Al0.05O2 positive electrode material during the first cycle[J]. J Electrochem Soc,2011,158:A357.
26 Makimura Y, Zheng S J, Ikuhara Y, et al. Microstructural observation of LiNi0.8Co0.15Al0.05O2 after charge and discharge by scanning transmission electron microscopy[J]. J Electrochem Soc,2012,159:A1070.
27 Kobayashi H, Shikano M, Koike S, et al. Investigation of positive electrodes after cycle testing of high-power Li-ion battery cells Ⅰ. An approach to the power fading mechanism using XANES[J]. J Power Sources,2007,174:380.
28 Dees D, Gunen E, Abraham D, et al. Alternating current impedance electrochemical modeling of lithium-ion positive electrodes[J]. J Electrochem Soc,2005,152:A1409.
29 Striebel K A, Shim J, Cairns S J, et al. Diagnostic analysis of electrodes from high-power lithium-ion cells cycled under different conditions[J]. J Electrochem Soc,2004,151:A857.
30 Dokko K, Nishizawa M, Horikoshi S, et al. In situ observation of LiNiO2 single-particle fracture during Li-ion extraction and insertion[J]. Electrochem Solid State Lett,2000,3:125.
31 Kostecki R, Lei J L, McLarnon F, et al. Diagnostic evaluation of detrimental phenomena in high-power lithium-ion batteries[J]. J Electrochem Soc,2006,153:A669.
32 Kostchi R, McLarnon F. Diagnostic evaluation of power fade phenomena and calendar life reduction in high-power lithium-ion batte-ries[J]. Springer Netherlands,2006,229:445.
33 Shao M. In situ microscopic studies on the structural and chemical behaviors of lithium-ion battery materials[J]. J Power Sources,2014,270:475.
34 Kerlau M, Marcinek M, Srinivasan V, et al. Studies of local degradation phenomena in composite cathodes for lithium-ion batteries[J]. Electrochimica Acta,2007,52:5422.
35 Lei J L, McLarnon F, Kostecki R. In-situ raman microscopy of individual LiNi0.8Co0.15Al0.05O2 particles in the Li-ion battery composite cathode[J]. J Phys Chem B,2005,109:952.
36 Sasaki T, Nonaka T, Oka H, et al. Capacity-fading mechanisms of LiNiO2-based lithium-ion batteries I. analysis by electrochemical and spectroscopic examination[J]. J Electrochem Soc,2009,156:A289.
37 Kojima Y, Muto S, Tatsumi K. Degradation analysis of a Ni-based layered positive-electrode active material cycled at elevated temperatures studied by scanning transmission electron microscopy and electron energy-loss spectroscopy[J]. J Power Sources,2011,196:7721.
38 Kono H, Takeuchi Y, Sasaki T, et al. Effects of Mg-substitution in Li(Ni,Co,Al)O2 positive electrode materials on the crystal structure and battery performance[J]. J Power Sources,2007,174:1131.
39 Cho Y, Oh P, Cho J. A new type of protective surface layer for high-capacity Ni-based cathode materials: Nanoscaled surface pillaring layer[J]. Nano Lett,2013,13:1145.
40 Xie H B, Du K, Hu G R, et al. The role of sodium in LiNi0.8Co0.15-Al0.05O2 cathode material and its electrochemical behaviors[J]. J Phys Chem C,2016,120:3235.
41 Lin F, Markus I, Nordlund D, et al. Spectroscopy and microscopy to unravel the advantages of Ti substitution in LiNi0.4Mn0.4Co0.2O2 cathode materials[C]//Fall Meeting of the Electrochemical Scoiety Berkeley, CA,2013.
42 Du Q X, Tang Z F, Ma X H, et al. Improving the electrochemical properties of high-energy cathode material LiNi0.5Co0.2Mn0.3O2 by Zr doping and sintering in oxygen[J]. Solid State Ionics,2015,279:11.
43 Lee E, Park J S, Wu T P, et al. Role of Cr3+/Cr6+ redox in chromium-substituted Li2MnO3·LiNi1/2Mn1/2O2 layered composite cathodes: Electrochemistry and voltage fade[J]. J Mater Chem A,2015,3:9915.
44 Lee M J, Noh M, Park M H, et al. The role of nanoscale-range vanadium treatment in LiNi0.8Co0.15Al0.05O2 cathode materials for Li-ion batteries at elevated temperatures[J]. J Mater Chem A,2015,3:13453.
45 Li X, Xie Z W, Liu W J, et al. Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8-Co0.15Al0.05O2[J]. Electrochinica Acta,2015,174:1122.
46 Huang B, Li X H, Wang Z X, et al. A comprehensive study on electrochemical performance of Mn-surface-modified LiNi0.8Co0.15Al0.05-O2 synthesized by an in situ oxidizing-coating method[J]. J Power Sources,2014,252:200.
47 Nonaka T, Okuda C, Seno Y, et al. In situ XAFS and micro-XAFS studies on LiNi0.8Co0.15Al0.05O2 cathode material for lithium-ion batteries[J]. J Power Sources,2006,162:1329.
48 Xiong X H, Wang Z X, Yan G C, et al. Role of V2O5 coating on LiNiO2-based materials for lithium ion battery[J]. J Power Sources,2014,245:183.
49 Xu Y, Li X H, Wang Z X, et al. Structure and electrochemical performance of TiO2-coated LiNi0.80Co0.15Al0.05O2 cathode material[J]. Mater Lett,2015,143:151.
50 Cheng C X, Yi H Y, Chen F. Effect of Cr2O3 Coating on LiNi1/3-Co1/3Mn1/3O2 as cathode for lithium-ion batteries[J]. J Electron Mater,2014,43:3681.
51 Huang B, Li X H, Wang Z X, et al. A facile process for coating amorphous FePO4 onto LiNi0.8Co0.15Al0.05O2 and the effects on its electrochemical properties[J]. Mater Lett,2014,131:210.
52 Lee S H, Yoon C S, Amine K, et al. Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating[J]. J Power Sources,2013,234:201.
53 Lee D J, Scrosati B, Sun Y K. Ni3(PO4)2-coated Li[Ni0.8Co0.15-Al0.05]O2 lithium battery electrode with improved cycling perfor-mance at 55 ℃[J]. J Power Sources,2011,196:7724.
54 Lim S N, Ahn W, Yeon S H, et al. Enhanced elevated-temperature performance of Li(Ni0.8Co0.15Al0.05)O2 electrodes coated with Li2O-2B2O3 glass[J]. Electrochimica Acta,2014,136:1.
55 Zhao E Y, Liu X F, Zhao H, et al. Ion conducting Li2SiO3-coated lithium-rich layered oxide exhibiting high rate capability and low polarization[J]. Chem Commun,2015,51:9093.
56 Hua C S, Du K, Tan C P, et al. Study of full concentration-gradient Li(Ni0.8Co0.1Mn0.1)O2 cathode material for lithium ion batteries[J]. J Alloy Compd,2014,614:264.
57 Sun Y K, Kim D H, Yoon C S, et al. A novel cathode material with a concentration-gradient for high-energy and safe lithium-ion batte-ries[J]. Adv Funct Mater,2010,20:485.
[1] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[2] 杨飞跃, 赵爽, 陈国兵, 陈俊, 杨自春. Si3N4泡沫陶瓷的制备过程影响因素及复合化研究进展[J]. 材料导报, 2019, 33(z1): 178-183.
[3] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[4] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[5] 王俊杰, 房晶瑞, 汪澜. 水泥生产全过程硫循环机制的研究进展[J]. 材料导报, 2018, 32(23): 4160-4169.
[6] 王顺风, 马雪, 张祖华, 王爱国, 李亚林. 粉煤灰-偏高岭土基地质聚合物的孔结构及抗压强度[J]. 材料导报, 2018, 32(16): 2757-2762.
[7] 李延军, 刘冬华, 张电, 马昱昭. 含h-BN复相陶瓷制备及性能研究进展[J]. 材料导报, 2018, 32(15): 2609-2617.
[8] 李之锋, 罗垂意, 王春香, 钟盛文, 张骞. 无钴镍基正极材料LiNi0.7Mn0.3O2 氟掺杂改性研究[J]. 《材料导报》期刊社, 2018, 32(14): 2329-2334.
[9] 吴健, 关庆丰, 蔡杰, 吕鹏, 张从林, 李晨. 脉冲电子束作用下热障涂层微观结构及热循环性能[J]. 《材料导报》期刊社, 2018, 32(13): 2202-2207.
[10] 秦晓素,黄洁,雷云,杨泽斌,陈庆华,颜廷亭. 明胶/掺锶β-磷酸三钙/硫酸钙复合多孔支架的制备与性能[J]. 《材料导报》期刊社, 2018, 32(12): 1967-1972.
[11] 毕玉水. 时间控制/pH依赖型盐酸黄连素结肠给药系统的控释性能[J]. 《材料导报》期刊社, 2018, 32(12): 1973-1977.
[12] 贺春林,高建君,王苓飞,马国峰,刘岩,王建明. N2流量对反应共溅射TiN/Ni纳米复合膜结构和结合强度的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2038-2042.
[13] 詹伟涛,贺建雄,王艺臻,姜宏. 羟基含量对全氧燃烧浮法玻璃结构弛豫的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2062-2065.
[14] 袁琦, 茶丽梅, 明文全, 杨修波, 李石勇, 韩俊峰. 硒化温度对CIGS/Mo界面微观结构和化学成分的影响[J]. 《材料导报》期刊社, 2018, 32(11): 1787-1790.
[15] 苏文佳, 牛文清, 齐小方, 李琛, 王军锋. 定向凝固法多晶硅杂质控制数值模拟概述[J]. 《材料导报》期刊社, 2018, 32(11): 1795-1805.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed