Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (11): 1787-1790    https://doi.org/10.11896/j.issn.1005-023X.2018.11.003
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
硒化温度对CIGS/Mo界面微观结构和化学成分的影响
袁琦1,茶丽梅1,明文全1,杨修波1,李石勇1,韩俊峰2
1 湖南大学材料科学与工程学院,湖南 410082;
2 北京理工大学物理学院,北京 100081
Influences of the Selenization Temperature on the Microstructures and Chemical Compositions of CIGS/Mo Interface
YUAN Qi1, CHA Limei1, MING Wenquan1, YANG Xiubo1, LI Shiyong1, HAN Junfeng2
1 College of Materials Science and Engineering, Hunan University, Changsha 410082;
2 Department of Physics,Beijing Institute of Technology,Beijing 100081
下载:  全 文 ( PDF ) ( 1781KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用磁控溅射和硒化热处理的方法在钠钙玻璃上沉积了一系列铜铟镓硒(CIGS)薄膜。利用X射线衍射(XRD)、高分辨透射电子显微术(HR-TEM)、高角环形暗场相(HAADF)和X射线能量散射光谱(EDS)元素面扫描分析等表征手段,研究了铜铟镓硒/钼(CIGS/Mo)界面特性随硒化温度的变化规律。结果表明,400 ℃硒化的薄膜中CIGS与Mo层之间界面清晰;当硒化温度为500 ℃时,CIGS/Mo界面上出现MoSe2薄层和富Na的二次相纳米颗粒;当硒化温度升至600 ℃时,MoSe2层增厚,同时富Na二次相纳米颗粒连接形成不平整的条带,CIGS/Mo界面演变为CIGS/富Na的二次相/MoSe2/Mo多层结构。此外,MoSe2的取向对富Na二次相的形成有一定的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁琦
茶丽梅
明文全
杨修波
李石勇
韩俊峰
关键词:  CuInxGa1-xSe2  薄膜  界面  微观结构  成分    
Abstract: CuInxGa1-xSe2 (CIGS) films were deposited on soda-lime glass by magnetron sputtering and selenization heat treatments. X-ray diffraction (XRD), high resolution transmission microscopy (HR-TEM), high-angle annular dark field (HAADF) image and X-ray energy dispersive spectrum (EDS) mapping were utilized to analyze the influence of selenization temperature on the characters of CIGS/Mo interface. It was found that CIGS/Mo interface was clear when the selenization temperature was 400 ℃. A MoSe2 thin layer and Na-riched second phase nanoparticles were detected at CIGS/Mo interface at 500 ℃. The MoSe2 layer became thicker and the Na-riched nanoparticles grew into a curved band at 600 ℃, therefore the CIGS/Mo interface developed into a multilayered structure of CIGS/Na-riched second phase/MoSe2/Mo. In addition, the orientations of MoSe2 grains may effect on the formation of second phases.
Key words:  CuInxGa1-xSe2    film    interface    microstructure    composition
               出版日期:  2018-06-10      发布日期:  2018-07-20
ZTFLH:  TB321  
  TM615  
基金资助: 国家自然科学基金(51402103);湖南省自然科学基金(2015JJ3040);湖南省喷射沉积技术及应用重点实验室年度重点项目
作者简介:  袁琦:女,1995年生,硕士研究生,从事薄膜太阳能电池研究 E-mail:18507495297@163.com 茶丽梅:通信作者,女,1977年生,博士,副教授,硕士研究生导师,主要从事材料表征、金属间化合物及薄膜太阳能电池研究 E-mail:18507495297@163.com
引用本文:    
袁琦, 茶丽梅, 明文全, 杨修波, 李石勇, 韩俊峰. 硒化温度对CIGS/Mo界面微观结构和化学成分的影响[J]. 《材料导报》期刊社, 2018, 32(11): 1787-1790.
YUAN Qi, CHA Limei, MING Wenquan, YANG Xiubo, LI Shiyong, HAN Junfeng. Influences of the Selenization Temperature on the Microstructures and Chemical Compositions of CIGS/Mo Interface. Materials Reports, 2018, 32(11): 1787-1790.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.11.003  或          http://www.mater-rep.com/CN/Y2018/V32/I11/1787
1 Kaneshiro J, Gallard N, Rocheleau R, et al. Advances in copper-chalcopyrite thin for films for solar energy conversion[J].Solar Energy Materials & Solar Cells,2010,94(1):12.
2 Nakada T. Invited paper: CIGS-based thin film solar cells and mo-dules: Unique material properties[J].Electronic Materials Letters,2012,8(2):179.
3 Rui K, Yagioka T, Adachi S, et al. New world record Cu(In,Ga)(Se,S)2 thin film solar cell efficiency beyond 22%[C]∥Photovoltaic Specialists Conference. Portland,2016:1287.
4 Seike S, Shiosaki K, Kuramoto M, et al. Development of high-efficiency CIGS integrated submodules using in-line deposition technology[J].Solar Energy Materials & Solar Cells,2011,95(1):254.
5 Niki S, Contreras M, Repins I, et al. CIGS absorbers and processes[J].Progress in Photovoltaics Research & Applications,2010,18(6):453.
6 Hibberd C J, Chassaing E, Liu W, et al. Non-vacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers[J].Progress in Photovoltaics Research & Applications,2010,18(6):434.
7 Dejene F B. Material and device properties of Cu(In,Ga)Se absorber films prepared by thermal reaction of InSe/Cu/GaSe alloys to elemental Se vapor[J].Current Applied Physics,2010,10(1):36.
8 Kohara N, Nishiwaki S, Hashimoto Y, et al. Electrical properties of the Cu(In,Ga)Se2/MoSe2/Mo structure[J].Solar Energy Mate-rials & Solar Cells,2011,67(1):209.
9 Pouzet J, Bernede J C. MoSe2 thin films synthesized by solid state reactions between Mo and Se thin films[J].Revue De Physique Appliquee,1990,25(8):807.
10 Lin Y C, Hong D H, Hsieh Y T, et al. Role of Mo∶Na layer on the formation of MoSe2 phase in Cu(In,Ga)Se2 thin film solar cells[J].Solar Energy Material & Solar Cells,2016,155:226.
11 Fleutot B, Lincot D, Jubault M, et al. GaSe formation at the Cu(In,Ga)Se2/Mo interface—A novel approach for flexible solar cells by easy mechanical lift-off[J].Advanced Materials Interfaces,2014,1(4):n/a.12 Caballero R, Nichterwitz M, Steigert A, et al. Impact of Na on MoSe2 formation at the CIGSe/Mo interface in thin-film solar cells on polyimide foil at low process temperatures[J].Acta Materialia,2014,63(2):54.
13 Han J, Liao C, Jiang T, et al. Investiagtion of copper indium selenide material growth by selenization of metallic precursors[J].Journal of Crystal Growth,2013,382(6):56.
14 Wada T, Kohara N, Negami T, et al. Chemical and structural characterization of Cu(In,Ga)Se2/Mo interface in Cu(In,Ga)Se2 solar cells[J].Japanese Journal of Applied Physics,1996,35(10):L1253.
15 Hsieh T P, Chuang C C, Wu C S, et al. Effects of residual copper selenide on CuInGaSe2 solar cell[J].Solid State Electronics,2011,56(1):175.
16 Wei S H, Zhang S B, Zunger A. Effects of Na on the electrical and structure properties of CuInSe2[J].Science China(Physics, Mecha-nics & Astronomy),2013,85(10):1861.
17 Ishizuka S, Yamada A, Islam M M, et al. Na-induced variations in the structural,optical,and electrical properties of Cu(In,Ga)Se2 thin films[J].Journal of Applied Physics,2009,106(3):434.
18 Bodegard M, Granath K, Rocket A, et al. Behavior of Na implanted into Mo thin films during annealing[J].Solar Energy Materials & Solar Cells,1999,58(2):199.
19 Stolt L, Hedstrom J, Kessler J, et al. ZnO/CdS/CuInSe2 thin-film solar cells with improved performance[J].Applied Physics Letters,1993,62(6):597.
20 Song X, Caballero R, Felix R, et al. Na incorporation into Cu(In,Ga)Se2 thin-film solar cell absorbers deposited on polyimide: Impact on the chemical and electronic surface structure[J].Journal of Applied Physics,2012,111(3):613.
21 Rudmann D, Bilger G, Kaelin M, et al. Effects of NaF coevaporation on structural properties of Cu(In,Ga)Se2 thin films[J].Thin Solid Films,2003,s431-432(3):37.
22 Abou-Ras D, Kostorz G, Bremaud D, et al. Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells[J].Thin Solid Films,2005,s480-481(3):433.
23 Nishiwaki S, Kohara N, Negami T, et al. MoSe2 layer formation at Cu(In,Ga)Se2/Mo interfaces in high efficiency Cu(In1-xGax)Se2 solar cells[J].Japanese Journal of Applied Physics,1998,37(1):L71.
[1] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[2] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[3] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[4] 原禧敏, 杨宏伟, 李郁秀, 巢云秀, 李耀, 陈家林, 陈力. 无卤素离子辅助合成纳米银线及其在柔性透明导电薄膜中的应用[J]. 材料导报, 2019, 33(z1): 300-302.
[5] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[6] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[7] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[8] 刘新灵, 陶春虎, 王天宇. 夹杂物形状对夹杂/基体界面应力应变分布的影响[J]. 材料导报, 2019, 33(z1): 436-439.
[9] 王婷, 张守海, 蹇锡高, 刘乾, 刘泽元. 界面聚合法合成含杂萘酮联苯结构共聚芳酯[J]. 材料导报, 2019, 33(z1): 495-498.
[10] 邓云华, 陶军, 马旭颐. TC4钛合金刚性拘束热自压扩散连接接头疲劳性能分析[J]. 材料导报, 2019, 33(9): 1449-1454.
[11] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[12] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[13] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[14] 赵雪柔, 吕煜坤, 石拓. 高熵合金相形成理论研究进展[J]. 材料导报, 2019, 33(7): 1174-1181.
[15] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed