Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1639-1644    https://doi.org/10.11896/j.issn.1005-023X.2018.10.013
  材料研究 |
0Cr25Ni7Mo4N双相不锈钢高温热塑性及组织演变
卢成壮1,李静媛1,高智君2,张泰然2,陈雨来2,王一德2
1 北京科技大学材料科学与工程学院,北京 100083;
2 北京科技大学冶金工程技术研究院,北京 100083
Thermoplasticity and Microstructure Evolution of Duplex Stainless Steel 0Cr25Ni7Mo4N Subjected to High-temperature Tensile Deformation
LU Chengzhuang1, LI Jingyuan1, GAO Zhijun2, ZHANG Tairan2, CHEN Yulai2, WANG Yide2
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083;
2 Metallurgical Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083
下载:  全 文 ( PDF ) ( 5896KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用热拉伸实验研究了两种不同元素(O、N)含量的双相不锈钢0Cr25Ni7Mo4N在1 000~1 200 ℃范围内、1 s-1应变速率条件下的热变形行为。利用光学显微镜(OM)、扫描电镜(SEM)和透射电镜(TEM)观察并分析了实验钢的组织和夹杂物。结果表明,经铝和硅铁脱氧后的实验钢热塑性良好,而未经脱氧的高O、N含量的实验钢在1 150 ℃以上才具有良好塑性,故双相不锈钢0Cr25Ni7Mo4N的热加工过程中应该控制温度在1 150 ℃以上;热加工过程中实验钢以铁素体的动态回复和奥氏体的动态再结晶为主要软化机制;高O、N含量钢中,在相界析出的含铬的氧化物夹杂引起的相界结合强度降低,及高温加工中不恰当的两相比例,是其热塑性较低的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢成壮
李静媛
高智君
张泰然
陈雨来
王一德
关键词:  0Cr25Ni7Mo4N双相不锈钢  高温热拉伸  热塑性  微观组织  夹杂物    
Abstract: The present work investigated the hot deformation behavior of two types of austenite-ferrite duplex stainless steels 0Cr25Ni7Mo4N, which differed in oxygen and nitrogen contents, via a hot tensile test within the temperature range of 1 000 ℃ to 1 200 ℃ and at the strain rate of 1 s-1. The microstructures and inclusions were determined by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results showed that the steel deoxidized by aluminum and ferrosilicon (i.e. steel with relatively low oxygen and nitrogen contents) performs favorable thermoplasticity, while the undeoxidized steel with more oxygen and nitrogen exhibits good thermoplasticity only at above 1 150 ℃. This indicated the hot working temperature should be controlled above 1 150 ℃. The softening mechanism during the hot working process is the recovery of ferrite and the dynamic recrystallization of austenite. It can be concluded that the reasons for the low thermoplasticity of high-O, N-content steel are: the decline of binding strength at phase boundary induced by the precipitated coarse oxide inclusions containing chromium; the inappropriate ratio of austenite and ferrite phase.
Key words:  0Cr25Ni7Mo4N duplex stainless steel    high-temperature tension    thermoplasticity    microstructure    inclusion
               出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TG337.5  
  TG142.71  
基金资助: 国家自然科学基金(U1660114);国家重点研发计划(2016YFB0300200)
通讯作者:  李静媛:通信作者,女,1970年生,博士,教授,主要研究方向为不锈钢的设计与开发,特种材料制备与加工 E-mail:lijy@ustb.edu.cn   
作者简介:  卢成壮:男,1990年生,博士研究生,主要研究方向为不锈钢的设计与开发
引用本文:    
卢成壮,李静媛,高智君,张泰然,陈雨来,王一德. 0Cr25Ni7Mo4N双相不锈钢高温热塑性及组织演变[J]. 《材料导报》期刊社, 2018, 32(10): 1639-1644.
LU Chengzhuang, LI Jingyuan, GAO Zhijun, ZHANG Tairan, CHEN Yulai, WANG Yide. Thermoplasticity and Microstructure Evolution of Duplex Stainless Steel 0Cr25Ni7Mo4N Subjected to High-temperature Tensile Deformation. Materials Reports, 2018, 32(10): 1639-1644.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.013  或          http://www.mater-rep.com/CN/Y2018/V32/I10/1639
1 吴玖,姜世振.双相不锈钢[M].北京:冶金工业出版社,1999.
2 Cui Z, Wang L, Ni H, et al. Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates [J]. Corrosion Science,2017,118:31.
3 Yu S R, Meng K, Li S X. Fatigue properties of duplex stainless steel SAF2507 under air and corrosive environments [J]. Journal of Materials Engineering,2015,43(1):77(in Chinese).
俞树荣,孟恺,李淑欣.空气和腐蚀环境下双相不锈钢SAF2507的疲劳性能[J].材料工程,2015,43(1):77.
4 Dehghan-Manshadi A, Hodgson P D. Effect of δ-ferrite co-existence on hot deformation and recrystallization of austenite [J]. Journal of Materials Science,2008,43(18):6272
5 Chen Y L, Zhang T R, Wang Y D, et al. Effect of O, N, and Ni contents on hot plasticity of 0Cr25Ni7Mo4N duplex stainless steel[J]. Acta Metallurgical Sinica,2014,50(8):905(in Chinese).
陈雨来,张泰然,王一德,等.O,N和Ni含量对0Cr25Ni7Mo4N双相不锈钢热轧塑性的影响[J].金属学报,2014,50(8):905.
6 Feng Z, Li J. Mechanism of hot-rolling crack formation in lean duplex stainless steel 2101[J]. International Journal of Minerals, Me-tallurgy, and Materials,2016,23(4):425.
7 Tavares S S M, De Noronha R F, Da Silva M R, et al. 475 C embrittlement in a duplex stainless steel UNS S31803[J]. Materials Research,2001,4(4):237.
8 Hernandez-Castillo L E, Beynon J H, Pinna C, et al. Micro-scale strain distribution in hot-worked duplex stainless steel[J]. Steel Research International,2005,76(2-3):137.
9 Park J Y, Ahn Y S. Effect of Ni and Mn on the mechanical properties of 22Cr micro-duplex stainless steel[J]. Acta Metallurgica Sinica (English Letters),2015,28(1):32.
10 Kingklang S, Uthaisangsuk V. Investigation of hot deformation behavior of duplex stainless steel grade 2507[J]. Metallurgical and Materials Transactions A,2017,48(1):95.
11 Evangelista E, McQueen H J, Niewczas M, et al. Hot workability of 2304 and 2205 duplex stainless steels[J]. Canadian Metallurgical Quarterly,2004,43(3):339.
12 Cizek P, Wynne B P. A mechanism of ferrite softening in a duplex stainless steel deformed in hot torsion[J]. Materials Science and Engineering: A,1997,230(1-2):88.
13 Pinol-Juez A, Iza-Mendia A, Gutierrez I. δ/γ Interface bondary sli-ding as a mechanism for strain accommodation during hot deformation in a duplex stainless steel[J]. Metallurgical and Materials Transactions A,2000,31(6):1671.
14 Silverstein R, Eliezer D. Hydrogen trapping energy levels and hydrogen diffusion at high and low strain rates (~105 s-1 and 10-7 s-1) in lean duplex stainless steel [J]. Materials Science and Engineering: A,2016,674:419.
15 Martin G, Yerra S K, Bréchet Y, et al. A macro-and micromecha-nics investigation of hot cracking in duplex steels[J]. Acta Materialia,2012,60(11):4646.
16 Feng Z H, Li J Y, Wang Y D. Equilibrium solid solubility of nitrides in matrix of lean stainless steel 2101 [J]. Chinese Journal of Engineering,2016,38(12):1755(in Chinese).
冯志慧,李静媛,王一德.经济型双相不锈钢2101中氮化物在基体中的平衡固溶度计算[J].工程科学学报,2016,38(12):1755.
17 Song Z, Zheng W, Han F, et al. Hot ductility of DSS and Its microstructure observation during hot deformation[J]. Journal of Iron and Steel Research, International,2013,20(8):83.
18 刘雅政,任学平,王自东,等.材料成形理论基础[M].北京:国防工业出版社,2004.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 曾伟. 架空导线用热塑性复合芯棒卷绕试验及仿真[J]. 材料导报, 2019, 33(z1): 94-97.
[3] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[4] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[5] 刘新灵, 陶春虎, 王天宇. 夹杂物形状对夹杂/基体界面应力应变分布的影响[J]. 材料导报, 2019, 33(z1): 436-439.
[6] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[7] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[8] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[9] 赵猛,张亮,熊明月. Sn-Cu系无铅钎料的研究进展及发展趋势[J]. 材料导报, 2019, 33(15): 2467-2478.
[10] 王剑豪,薛松柏,吕兆萍,王刘珏,刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
[11] 孟强, 车倩颖, 王快社, 张坤, 王文, 黄丽颖, 彭湃, 乔柯. 铝铜异种材料搅拌摩擦焊接接头微观组织与性能[J]. 材料导报, 2019, 33(12): 2030-2034.
[12] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[13] 蔡惠坤, 翁泽钜, 顾开选, 王凯凯, 郑建朋, 王俊杰. 硬质合金深冷处理研究进展[J]. 材料导报, 2019, 33(1): 175-182.
[14] 丁雨田, 马元俊, 豆正义, 刘建军, 高钰璧, 孟斌. 固溶处理温度对GH3625合金热挤压管材微观组织和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1311-1317.
[15] 张金祥, 欧阳希, 周健, 张济山. Cr含量降低对H13钢组织与力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1323-1327.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed