Please wait a minute...
材料导报  2020, Vol. 34 Issue (5): 5078-5084    https://doi.org/10.11896/cldb.18110187
  无机非金属及复合材料 |
非金属矿物材料脱霉性能评价方法研究进展
张娜1, 韩筱玉1, 梁金生1,2, 李艳1, 孟军平1,2, 张红1,2
1 生态环境与信息特种功能材料教育部重点实验室(河北工业大学),天津 300130;
2 河北工业大学能源与环保材料研究所,天津 300130
Evaluation Method of Non-metallic Mineral Materials for Mycotoxins Removal: a Review
ZHANG Na1, HAN Xiaoyu1, LIANG Jinsheng1,2, LI Yan1, MENG Junping1,2, ZHANG Hong1,2
1 Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, China;
2 Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130, China
下载:  全 文 ( PDF ) ( 1818KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 饲料极易霉变产生霉菌毒素,不但危害动物机体健康,还会引发食品安全问题。蒙脱石、凹凸棒石、海泡石及沸石等非金属矿物材料具有天然的层状、纤维状及孔状纳米结构,矿物表面含有丰富的羟基和悬挂键,晶体结构比较稳定,具有良好的吸附性能和离子交换能力,在饲料脱霉领域的应用前景十分广阔。添加到饲料中的脱霉材料可能会与动物体内的营养物质、抗生素、微量元素等相互作用;另外,饲料内会同时含有多种霉菌毒素,不同霉菌毒素间会产生协同作用。因此,脱霉材料对饲料内不同霉菌毒素的脱除效果有很大差异。
  目前国内外尚且没有统一的非金属矿物材料脱霉性能的检验方法和评价标准,主要原因在于标准溶液中霉菌毒素的浓度及脱霉材料的添加浓度有很大差异,不易统一。市场上脱霉产品良莠不齐,脱霉效果又不容易直观评价,不仅给用户的选择带来很大困扰,还给畜牧业的发展带来了极大影响,因此建立科学统一的非金属矿物材料脱霉性能检测实验方法和评价标准势在必行。
  脱霉材料性能检测实验方法主要分为体外实验法、体内实验法及体外模拟实验法。其中,体外实验方法简单、快捷,易于实现,应用广泛,但缺少动物消化吸收环境,不能准确评定脱霉材料对霉菌毒素的实际吸附效果,但可判断脱霉材料对霉菌毒素的吸附是否有效。体内实验虽然可以准确评价脱霉材料的有效性和安全性,但动物体内消化吸收过程复杂,实验过程所需周期较长,工作量大,样品的采集和制备比较困难。随着对动物消化吸收过程研究的深入,可建立体外模拟生物消化系统来对脱霉材料进行检测、评价,其结果更接近动物体内脱霉材料与霉菌毒素的结合,但建立体外模型复杂,难度较大,设备购买昂贵。因此,在体外模拟酶消化法和体外实验吸附-解吸法的基础上提出一种新的体外模拟实验法来对非金属矿物材料的脱霉性能进行测定。
  本文介绍了典型非金属矿物材料脱霉性能的主要检测实验方法、研究进展及发展方向,以期为非金属矿物材料脱霉性能检测及评价方法标准化奠定基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张娜
韩筱玉
梁金生
李艳
孟军平
张红
关键词:  非金属矿物材料  霉菌毒素  脱霉性能  效果评价  检测方法    
Abstract: Animal feed is easily contaminated by mycotoxins, which will cause severe threat to animal and human health. Non-metallic mineral materials, such as montmorillonite, attapulgite, sepiolite and zeolite, have natural layered, fibrous and poreous nanostructures. Moreover, abundant hydroxyl and dangling bonds at the surface of the non-metallic mineral materials are usually accessible to contaminant, acting as adsorption sites, and the relatively stable crystal structure possess high ion exchangeable capacity. These characteristics make it a powerful adsorbent for contaminant, which has broad application prospects to remove mycotoxins. However, there exist some difficulties for evaluation method of non-metallic mineral materials to remove mycotoxins. For example, mycotoxins removal material may interact with nutrients, antibiotics, trace elements, etc. in the body of animals. Moreover, various mycotoxins may occur simultaneously in animal feeds, and the toxic effects may be amplified due to their synergistic interaction. Therefore, the mycotoxins removal capacity of material is rather different.
  So far, there was no uniform test method and evaluation standard for the non-metallic mineral materials to remove mycotoxins. The main restrict of the evaluation method on the adsorption capacity is that the diversity of mycotoxins and their variety concentration in the feed. Furthermore, the diverse, vary and complicated removal product caused great trouble to choose, which seriously hampered the healthy development of livestock and feed industries. Therefore, it is imperative to establish a scientific, effective and unified test method and evaluation standard of non-metallic mineral materials for mycotoxins removal.
  At present, in vitro, vivo and vitro simulation methods were widely used to test the properties of mycotoxin removal materials. All these methods are effective to a certain degree, but they still have considerable limitations in practical applications. For instance, in vitro method is simple, fast and easy to implement. However, it lacked similar animal digestion and absorption environment that limit accurate evaluation of the remove capacity. In vivo method can accurately evaluate the effectiveness and safety of mycotoxin removal materials. Nevertheless, the process of digestion and absorption in the body of animal was complicated, the experimental process was time-consuming, and the collection of the sample was extremely difficult. With the deepening of research on the digestion and absorption process of animals, an in vitro simulated biological digestion system can be established to detect and evaluate the mycotoxin removal materials. However, the establishment of in vitro simulation model was complicated and the equipment was expensive. Therefore, a novel in vitro simulation method for determining the mycotoxin removal performance of non-metallic mineral materials was proposed, which is on the basis of in vitro simulated enzymatic digestion method and in vitro experimental adsorption-desorption method.
  This paper reviewed the latest research progress on test methods and development direction of the mycotoxins removal performance of typical non-metallic mineral materials. It is expected that this review can provide a certain reference for the standardization of evaluation methods for non-metallic mineral materials to remove mycotoxins in animal feed.
Key words:  non-metallic mineral materials    mycotoxins    mycotoxin removal performence    effect evaluation    detection methods
               出版日期:  2020-03-10      发布日期:  2020-01-16
ZTFLH:  TB32  
基金资助: 国家重点研发计划项目课题(2017YFB0310805)
通讯作者:  Liang_jinsheng@sina.com   
作者简介:  张娜,2017年9月于河北工业大学材料学院材料物理与化学专业攻读硕士学位。现为河北工业大学材料学院博士研究生,在梁金生教授的指导下进行研究。目前主要研究领域为生态环境功能材料,研究方向为矿物脱霉材料;梁金生,研究员,博士研究生导师。现任河北工业大学材料学院副院长、生态环境与信息特种功能材料教育部重点实验室主任。长期从事生态环境功能材料研究工作,系统研究了非金属矿物材料节能环保功能化理论与技术,成功开发高性能电气石、海泡石矿物材料先进制备技术及其在燃烧节能环保、功能陶瓷等领域的应用技术。主持完成“十五”、“十一五”、“十二五”期间国家863计划和国家科技支撑计划重点项目课题共3项。现为“十三五”国家重点研发计划项目 “环保非金属矿物功能材料制备技术及应用研究”项目负责人。
引用本文:    
张娜, 韩筱玉, 梁金生, 李艳, 孟军平, 张红. 非金属矿物材料脱霉性能评价方法研究进展[J]. 材料导报, 2020, 34(5): 5078-5084.
ZHANG Na, HAN Xiaoyu, LIANG Jinsheng, LI Yan, MENG Junping, ZHANG Hong. Evaluation Method of Non-metallic Mineral Materials for Mycotoxins Removal: a Review. Materials Reports, 2020, 34(5): 5078-5084.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110187  或          http://www.mater-rep.com/CN/Y2020/V34/I5/5078
1 Kabak B, Dobson A D W, Var I. Critical Reviews in Food Science and Nutrition, 2006, 46(8), 593.
2 Verheecke C, Liboz T, Mathieu F. International Journal of Food Microbiology, 2016, 237,1.
3 Mclean M, Dutton M F. Pharmacology and Therapeutics, 1995, 65, 163.
4 Escriva L, Font G, Manyes L. Food and Chemical Toxicology, 2015, 78, 185.
5 Ferre F S. Food Control, 2016, 62, 291.
6 Molina-Molina J M, Real M, Jimenez-Diaz I, et al. Food and Chemical Toxicology, 2014, 74, 233.
7 Phillips T D. Toxicological Science, 1999, 52(2), 118.
8 Gregorio M C, Neeff D V, Jager A V, et al. Toxin Reviews, 2014, 33, 125.
9 Uddin M K. Chemical Engineering Journal, 2017, 308, 438.
10 Slamova R, Trckova M, Vondruskova H. Applied Clay Science, 2011, 51(4), 395.
11 Li Y, Tian G Y, Dong G Y, et al. Applied Clay Science, 2018, 163, 299.
12 Mitchell N J, Xue K S, Lin S H, et al. Journal of Applied Toxicology, 2014, 34(7), 795.
13 Miazzo R, Peralta M F, Magnoli C, et al. Poultry Science, 2005, 84(1), 1.
14 Wang J Q, Liu Y, Yang F, et al. China Swine Industry, 2017,12(6), 48(in Chinese).
王金全, 刘杰, 杨凡, 等. 中国猪业, 2017, 12(6), 48.
15 Ma X H. Science and Practice, 2011, 47(10), 64(in Chinese).
马学会. 科技与实践, 2011, 47(10), 64.
16 Xia M S, Xu Z R, Hu C H, et al. Chinese Journal of Animal and Veterinary Sciences, 2005, 36(1), 21(in Chinese).
夏枚生, 许梓荣, 胡彩虹, 等. 畜牧兽医学报, 2005, 36(1), 21.
17 Xie Q, Sun M J, Chang W H, et al. Chinese Journal of Animal Nutrition, 2015, 27(1), 204(in Chinese).
谢庆, 孙满吉, 常文环, 等. 动物营养学报, 2015, 27(1), 204.
18 Soufiani G R N, Razmara M, Kermanshahi H, et al. Applied Clay Scie-nce, 2016, 123, 129.
19 Liang X W, Li F D, Zhang J M, et al. China Animal Husbandry & Veterinary Medicine, 2014, 41(11), 133(in Chinese).
梁晓维, 李发弟, 张军民, 等. 中国畜牧兽医, 2014, 41(11), 133.
20 Avantaggiato G, Havenaar R, Viaconti V. Food and Chemical Toxicology, 2004, 42, 817.
21 Xu R, Wang G Q, Wu B C, et al. Feed Research, 2015, 16, 30(in Chinese).
徐瑞, 王改琴, 邬本成, 等. 饲料研究, 2015, (16), 30.
22 Bampidis V A, Christodoulou V, Theophilou N, et al. Applied Clay Scie-nce, 2014, 91, 25.
23 Papadopoulos G A, Kanoulas V, Arsenos G, et al. Applied Clay Science, 2016, 132, 535.
24 Wang X Y. The study on detoxifcation effect of mycotoxin adsorbent BZ for zearalenon. Master’s Thesis, Nanjing Agricultural University, China, 2014(in Chinese).
王馨宇. 霉菌毒素脱毒剂BZ对玉米赤霉烯酮的脱毒效果研究. 硕士学位论文, 南京农业大学, 2014.
25 He W L. Adsorption of bentonite for nutriments and toxins and application of bentonite as anti mould and detoxicant of aflatoxin. Master’s Thesis, College of Animal Science Huazhong Agricultural Univerity, China, 2003(in Chinese).
何万领. 膨润土对营养成分、有害物质吸附特性及防霉脱毒剂研究. 硕士学位论文, 华中农业大学, 2003.
26 Diaz D E, Hagler W M Jr, Hopkins B A, et al. Mycopathologia, 2002, 156, 223.
27 Hussain D, Mateen A, Iii D M G. Aquaculture, 2017, 475, 8.
28 Barrientos-Velázquez A L, Arteaga S, Dixon J B, et al. Applied Clay Science, 2016, 120, 17.
29 Sabater-Vilar M, Malekinejad H, Selman M H J, et al. Mycopathologia, 2007, 163, 81.
30 Park S H, Kim J, Kim D, et al. Toxicology in Vitro, 2017, 38, 108.
[1] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[2] 张恒, 周玉惠, 张飞, 龚维, 何力. 聚丙烯/β-环糊精复合材料发泡性能及力学性能的研究[J]. 材料导报, 2020, 34(4): 4148-4152.
[3] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[4] 李大玉, 张文韬, 张超. 不同种类金属掺杂改性TiO2材料光催化性能的研究进展[J]. 材料导报, 2019, 33(23): 3900-3907.
[5] 王会权, 陈惠, 王后, 巫静, 刘洪波. 还原温度对石墨烯负载Pd颗粒的结构与电催化性能的影响[J]. 材料导报, 2019, 33(22): 3695-3700.
[6] 王怀基, 董海青. 还原响应的白蛋白纳米颗粒负载甲氨蝶呤用于抗肿瘤治疗[J]. 材料导报, 2019, 33(Z2): 547-552.
[7] 赵西坡, 胡欢, 熊娟, 王鑫, 余晓磊, 彭少贤. 弹性体共混改性聚乳酸(PLA)高韧性共混物研究进展[J]. 材料导报, 2019, 33(Z2): 590-598.
[8] 郭华超, 邓伟, 杨波, 黄国家, 李爽, 文芳. 聚偏氟乙烯/膨胀石墨高介电复合材料的制备及性能[J]. 材料导报, 2019, 33(20): 3520-3523.
[9] 刘贺, 傅仁利, 何钦江, 李国郡, 王贺. SiO2-BPO4/LMZBS低温烧结玻璃陶瓷及其微波介电性能[J]. 材料导报, 2019, 33(18): 3152-3155.
[10] 张鹏飞, 徐盼盼, 于仁红, 贾德昌, 杨治华. 2Si-B-3C-N陶瓷的热压烧结工艺[J]. 材料导报, 2019, 33(18): 3161-3165.
[11] 谢全灵,邵文尧,马寒骏,刘晨然,洪专. 基于二维石墨烯纳米材料优化高分子分离膜的研究进展[J]. 材料导报, 2019, 33(17): 2958-2965.
[12] 皮茂, 张守村, 魏杰, 李伟达. 采用高内相乳液模板法制备葡萄糖基/麦芽糖基大孔材料及其形貌表征[J]. 材料导报, 2019, 33(16): 2804-2807.
[13] 刘泓吟, 杨宏宇, 陈明凤. 异氰酸酯指数对聚氨酯硬泡阻燃、热稳定性及燃烧性能的影响[J]. 材料导报, 2019, 33(12): 2071-2075.
[14] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[15] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed