Please wait a minute...
材料导报  2019, Vol. 33 Issue (20): 3520-3523    https://doi.org/10.11896/cldb.18080151
  高分子与聚合物基复合材料 |
聚偏氟乙烯/膨胀石墨高介电复合材料的制备及性能
郭华超1, 邓伟2, 杨波1, 黄国家1, 李爽1, 文芳1
1 广州特种承压设备检测研究院,广州 510663
2 哈尔滨理工大学材料科学与工程学院,哈尔滨 150040
Preparation and Properties of Polyvinylidene Fluoride/Expanded Graphite High Dielectric Composites
GUO Huachao1, DENG Wei2, YANG Bo1, HUANG Guojia1, LI Shuang1, WEN Fang1
1 Guangzhou Special Pressure Equipment Inspection and Research Institute, Guangzhou 510663
2 School of Material Science and Engineering, Harbin University of Science and Technology, Harbin 150040
下载:  全 文 ( PDF ) ( 2518KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 本实验采用溶液共混法制备了聚偏氟乙烯/膨胀石墨(PVDF/EG)复合材料,研究了膨胀石墨(EG)含量对复合材料微观形貌、电学性能、力学性能和热稳定性的影响。结果表明:EG的加入极大地降低了复合材料的体积电阻率(ρv),提高了其介电常数(εr)和介电损耗(tanδ),在EG质量分数为4%附近复合材料出现了渗流现象。PVDF/EG(5%,质量分数)复合材料的ρv相较于纯PVDF降低了11个数量级,εr提高了约68.75倍,上升至550。随EG含量的增加,复合材料的拉伸强度和杨氏模量均呈先增大后减小的趋势,当EG质量分数为5%时分别达到最大值58.31 MPa、910.09 MPa,比纯PVDF分别提高了27.76%、70.10%;而断裂伸长率随EG含量的增加而逐渐减小。复合材料的热稳定性在EG加入量较少时得到明显改善,PVDF/EG(4%,质量分数)复合材料失重5%的分解温度比纯PVDF提高了5.90 ℃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭华超
邓伟
杨波
黄国家
李爽
文芳
关键词:  聚偏氟乙烯  膨胀石墨  高介电  复合材料    
Abstract: The polyvinylidene fluoride/expanded graphite (PVDF/EG) composites were prepared by solution mixing, and the effects of EG content on the microstructure, electrical, mechanical and thermal stability of the composites were studied. The results show that the addition of expan-ded graphite (EG) greatly reduce the volume resistivity (ρv), improve the dielectric constant (εr) and the dielectric loss (tanδ) of the compo-sites, and the percolation threshold in PVDF/EG composites is about 4wt%. The ρv is 11 orders of magnitude smaller than that of pure polyvinylidene fluoride (PVDF) when the EG content is 5wt%, and εr is increased by about 68.75 times to 550. With the addition of EG, the tensile strength and Young modulus of the composites increase firstly and then decrease, reaching the maximum value of 58.31 MPa and 910.09 MPa respectively when the content of EG is 5wt%, which is increased by 27.76% and 70.10% in comparison with pure PVDF. While the elongation at break of the composites decrease gradually with the addition of EG. Furthermore, thermal stability of the composites is obviously improved when EG content is low, the decomposition temperature of 5% weight loss of PVDF/EG(4wt%) composites is 5.90 ℃ higher than that of PVDF.
Key words:  polyvinylidene fluoride    expanded graphite    high dielectric constant    composites
               出版日期:  2019-10-25      发布日期:  2019-08-29
ZTFLH:  TB324  
基金资助: 广东省质监局科技项目(2016CT21);广州市市场监督管理局科技项目(2019kj14)
作者简介:  郭华超,广州特种承压设备检测研究院助理工程师,材料学工学硕士,研究方向为聚合物基复合材料。目前发表SCI收录论文3篇,EI收录论文2篇,中文核心论文2篇,实用新型专利授权3个,负责广州市市场监督管理局科技项目1项。杨波,广州特种承压设备检测研究院高级工程师,中科院广州能源研究所工学博士,研究领域为热管理新材料、特种设备安全、节能及系统性风险分析。目前在国内外期刊上发表论文30余篇,其中SCI收录8篇;第一发明人授权专利14件,其中美国发明专利授权2件,国家发明专利授权5件,实用新型专利授权8件;负责起草国家、省市地方标准4项。完成国家质检总局项目和广东省科技厅科技项目等4项。黄国家,广州特种承压设备检测研究院工程师。2015年取得中山大学材料物理与化学专业博士学位。他的主要研究领域是纳米材料和聚合物材料的合成与应用。以第一作者或通讯作者在国内外学术期刊发表论文10余篇,申请国家发明专利5件,担任Journal of Applied Polymer Science等SCI期刊的审稿人。huangguojia@163.com
引用本文:    
郭华超, 邓伟, 杨波, 黄国家, 李爽, 文芳. 聚偏氟乙烯/膨胀石墨高介电复合材料的制备及性能[J]. 材料导报, 2019, 33(20): 3520-3523.
GUO Huachao, DENG Wei, YANG Bo, HUANG Guojia, LI Shuang, WEN Fang. Preparation and Properties of Polyvinylidene Fluoride/Expanded Graphite High Dielectric Composites. Materials Reports, 2019, 33(20): 3520-3523.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18080151  或          http://www.mater-rep.com/CN/Y2019/V33/I20/3520
1 Mishra P, Bhat B R, Bhattacharya B, et al. Metal and Polymer Matrix Composites, 2018, 70, 1302.2 Rizzello G, Naso D, York A, et al. Smart Materials & Structure, 2016, 25 (3), 035034.3 Hu N, Karube Y, Arai M, et al. Carbon, 2010, 48(3), 680.4 Luo L, Li X R, Wang H H, et al. Journal of Functional Materials, 2018, 49 (2), 2103(in Chinese).罗璐, 李小瑞, 王海花, 等. 功能材料, 2018, 49 (2), 2103.5 Zhu Y, Li L. Polymer Materials Science and Engineering, 2017, 33 (4), 35(in Chinese).朱燕, 李莉. 高分子材料科学与工程, 2017, 33 (4), 35.6 Jiang J, Chen S, Li J J, et al. Journal of Textile Research, 2018, 39 (2), 14(in Chinese).蒋洁, 陈胜, 李静静, 等. 纺织学报, 2018, 39 (2), 14.7 Deng H, Lin L, Ji M, et al. Progress in Polymer Science, 2014, 39 (4), 627.8 You F, Wang D R. Acta Polymerica Sinica, 2014(7), 878(in Chinese).游峰, 王东瑞. 高分子学报, 2014(7), 878.9 Ram R, Rahaman M, Khastgir D. Composites Part A, 2015, 69, 30.10 Xu X L, Yang C J, Yang J H, et al. Composites Part B, 2017, 109, 91.11 Ram R, Rahaman M, Khastgir D. Journal of Applied Polymer Science, 2014, 131 (3), 1082.12 Pei L X, Wang X Y, Xu J C, et al. New Chemical Materials, 2017, 45(2), 228(in Chinese).裴丽霞, 王雪银, 徐建昌, 等. 化工新型材料, 2017, 45(2), 228.13 Yang Y L, Yan S C, Xue Y H, et al. Materials Review B:Research Papers, 2016, 30(8), 15(in Chinese).杨育林, 闫世程, 薛亚红, 等. 材料导报:研究篇, 2016, 30(8), 15.14 Li Y C, Li R K Y, Tjong S C. Journal of Nanomaterials, 2010 (19), 139.15 Li Y C, Li R K Y, Tjong S C. Journal of Materials Research, 2010, 25 (8), 1645.16 Guo H C, Yu W L, Yang S J, et al. Insulating Materials, 2017, 50(11), 1(in Chinese).郭华超, 于伟莉, 杨是佳, 等. 绝缘材料, 2017, 50(11), 1.17 Uyor U O, Popoola A P, Popoola O, et al. Advances in Polymer Techno-logy, 2018, 37(8), 2838.18 Kang Y. China Rubber/Plastics Technology and Equipment(rubber), 2018, 44(11), 6 (in Chinese).康永. 橡塑技术与装备, 2018, 44(11), 6.19 Wang J L, Wang W Y, Shi J Y, et al. Acta Materiae Compositae Sinica, 2015, 32(5), 1355 (in Chinese).王金龙, 王文一, 史菁元, 等. 复合材料学报, 2015, 32(5), 1355.20 Liang J Z, Du Q, Tsui C P, et al. Composites Part B, 2016, 95, 166.21 He D, Xie L S, Ma Y L. China Plastics, 2015, 29 (8), 32(in Chinese).何达, 谢林生, 马玉录. 中国塑料, 2015, 29 (8), 32.22 Li Y, Li R K Y, Tjong S C. E-polymers, 2009, 9 (1), 217.23 Li H X, Lou Y, Han X H, et al. Non-Metallic Mines, 2018, 41(2), 14(in Chinese).李会新, 娄雨, 韩兴华, 等. 非金属矿, 2018, 41(2), 14.24 Dai L Q, Peng X, Yan J, et al. Chemical Production and Technology, 2016, 23(5), 32(in Chinese).戴连奇, 彭雄, 阎洁, 等. 化工生产与技术, 2016, 23(5), 32.
[1] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[2] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[3] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[4] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[5] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[6] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[7] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[8] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[9] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[10] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[11] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[12] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[13] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[14] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[15] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed