Please wait a minute...
材料导报  2020, Vol. 34 Issue (5): 5085-5095    https://doi.org/10.11896/cldb.18080105
  金属与金属基复合材料 |
金纳米线的制备及传感应用研究进展
金嘉炜, 刘传扬, 张冶, 刘国伟, 楚增勇, 李公义
国防科技大学文理学院,长沙 410073
Preparation and Application in Sensing Fields of Gold Nanowires
JIN Jiawei, LIU Chuanyang, ZHANG Ye, LIU Guowei, CHU Zengyong, LI Gongyi
College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
下载:  全 文 ( PDF ) ( 7053KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金纳米材料除了具有普通纳米材料的特性(表面效应、介电限域效应、小尺寸效应及量子隧道效应等)外,还具备独特的稳定性、导电性,优良的生物相容性以及超分子和分子识别、荧光等特性,这使其在纳米电子学、光电子学、传感和催化、生物分子标记、生物传感等领域展现出广阔的应用前景。在多种形态各异的金纳米材料中,金纳米线一直受到研究者们的高度重视。探索制备金纳米线的新技术与新方法,进一步拓展其应用领域,是当前纳米材料领域的研究焦点之一。
  金纳米线因具有长径比大、柔性较高以及制备方法简便等优点,在传感器、微电子、光学器件、表面增强拉曼、生物检测等领域都展现出不可忽视的潜力。随着技术的发展,研究者们已开发了多种制备金纳米线的方法,如模板合成法、溶液法、阶边修饰法。然而近年来,纳米电子学与传感器等领域的应用需求对金纳米线的制备方法提出了更高的要求,如制备的金纳米线要有较为理想的形貌(金纳米线的直径与几何结构直接影响电子的传输性能),且要考虑方法的复杂性,是否对环境造成污染及金纳米线产量等因素。
  本文结合近十年来金纳米线的制备与应用研究成果,重新分类归纳了金纳米线的制备方法与调控方式,并对金纳米线在传感领域的应用进行了较为全面的总结,以期为后续研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金嘉炜
刘传扬
张冶
刘国伟
楚增勇
李公义
关键词:  金纳米线  可控制备  传感领域    
Abstract: In addition to the properties of ordinary nanomaterials (surface effect, dielectric confinement effect, small size effect and quantum tunneling effect), gold nanomaterials also have unique stability, electrical conductivity, excellent biocompatibility, supramolecular recognition, fluorescence and other characteristics, which broad their application prospects in the fields of nanoelectronics, optoelectronics, sensing and catalysis, biolabeling and biosensing. Among various forms of gold nanomaterials, the gold nanowires have always been highly valued by researchers. Therefore, exploring new technologies and new methods for preparing gold nanowires and further expanding their application fields are the research focuses in the field of nanomaterials.
  Gold nanowires have a large aspect ratio, good flexibility and their preparation methods are also relatively simple, thus, they have been extensively adopted in the fields of sensors, microelectronics, optical devices, surface enhanced Raman and biological detection. With the development of technology, researchers have developed a variety of methods for preparing gold nanowires, including template synthesis method, solution method, and edge modification method. However, in recent years, the application requirements in the fields of nanoelectronics and sensors have put forward higher requirements for the preparation of gold nanowires, such as a better morphology (diameter and geometry of gold nanowires) for gold nanowires, the complexity of the method, environmental pollution and production rate.
  Combining the novel preparation method and application of gold nanowires in the past ten years, this paper reclassifies the preparation methods and regulation methods of gold nanowires, and comprehensively summarizes the application of gold nanowires in the sensing field, in order to provide an overview for researchers.
Key words:  gold nanowires    controlled preparation    sensor field
               出版日期:  2020-03-10      发布日期:  2020-01-16
ZTFLH:  O648  
基金资助: 国家自然科学基金(61574172)
通讯作者:  nudtlgy@163.com   
作者简介:  金嘉炜,1995年生。2017年毕业于国防科技大学应用化学专业,获学士学位。2017年至今就读于国防科技大学环境工程专业硕士。主要研究方向为纳米材料及其化学传感应用;李公义,1980年生。2010年毕业于国防科技大学材料学专业,获博士学位。同年留校工作,2015年晋升副教授。主要研究方向为无机纳米材料的制备及其在化学传感器的应用等;楚增勇, 男, 国防科技大学文理学院研究员。2003年于国防科技大学获得博士学位。其后留校开展教学科研工作,2008年~2009年在牛津大学化学系作访问学者,2013年获湖南省杰出青年科学基金资助。主要研究方向为可穿戴柔性传感器件、伪装隐身功能材料与器件。
引用本文:    
金嘉炜, 刘传扬, 张冶, 刘国伟, 楚增勇, 李公义. 金纳米线的制备及传感应用研究进展[J]. 材料导报, 2020, 34(5): 5085-5095.
JIN Jiawei, LIU Chuanyang, ZHANG Ye, LIU Guowei, CHU Zengyong, LI Gongyi. Preparation and Application in Sensing Fields of Gold Nanowires. Materials Reports, 2020, 34(5): 5085-5095.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18080105  或          http://www.mater-rep.com/CN/Y2020/V34/I5/5085
1 Eom G, Kim h, Hwang A, et al. Advanced Functional Materials, 2017, 27(37),1701832.
2 Jung M, Noh H, Doh Y J, et al. ACS Nano, 2011, 5(3),2271.
3 Sahu G, Gordon S W, Tarr M A. RSC Advances, 2011, 2(2),573.
4 Thomas A, Savaliya P, Kumar K, et al. JOSA-B, 2018, 35(7), 1687.
5 Zhu L, Searson P C. Journal of Physical Chemistry B, 2006, 110(9),4318.
6 Vazinishayan A, Yang S, Duongthipthewa A, et al. AIP Advances, 2016, 6(2),025006.
7 Nikolov A S, Nedyalkov N N, Nikovr G, et al. Applied Surface Science, 2014, 302(8), 243.
8 Penner R M, Zach M P, Favier F. U.S. patent, 6843902, 2005.
9 Kraus T, De J N. Langmuir, 2013, 29(26), 8427.
10 Tang Z K. Preparation and research of nanoporous templates and one-dimensional magnetic nanomaterials. Master's Thesis, University of Electronic Science and Technology, China, 2015(in Chinese).
唐中开. 纳米多孔模板和一维磁性纳米材料的制备与研究, 硕士学位论文,电子科技大学, 2015.
11 Hutchinson T O, Liu Y P, Kiely C, et al. Advanced Materials, 2001, 13(23),1800.
12 Zhang H, Lu Z W, Hou J W, et al. Materials Review A: Review Papers, 2016, 30(9),49(in Chinese).
张慧, 芦志伟, 侯军伟, 等.材料导报:综述篇, 2016, 30(9),49.
13 Holubowitch N, Nagle L C, Rohan J F. Solid State Ionics, 2012, 216(20),110.
14 Zhao W U, Zhang Y W, Kaid U. High Power Laser & Particle Beams, 2013, 25(8),2000.
15 Baitimirova M, Pastare A, Katkevics J, et al. Micro & Nano Letters, 2014, 9(11),761.
16 Murphy C J, Jana N R. Advanced Materials, 2002, 14(1),80.
17 Zeng J, Huang J, Lu W, et al. Advanced Materials, 2010, 19(16),2172.
18 Wang T, Zhang D, Xu W, et al. Langmuir, 2002, 18(22),8655.
19 Huang P. Preparation of one-dimensional metal oxide nanomaterials by pulsed laser deposition and its properties. Ph.D. Thesis, Lanzhou University, China, 2014(in Chinese).
黄鹏. 脉冲激光沉积制备一维金属氧化物纳米材料及其性质研究.博士学位论文, 兰州大学, 2014.
20 Lu X X, Bai H P, Yang G M, et al. Materials Review, 2007, 21(s3),138(in Chinese)
卢旭晓, 白慧萍, 杨光明,等.材料导报, 2007, 21(s3),138.
21 Feng Y C, Dong S A, Tang C. Precious Metals, 2007, 28(4), 1(in Chinese).
冯永成, 董守安, 唐春. 贵金属, 2007, 28(4),1.
22 Wirtz M, Martin C R. Advanced Materials, 2010, 15(5),455.
23 Umh H N, Shin H H, Yi J, et al. Korean Journal of Chemical Enginee-ring, 2015, 32(2),299.
24 Zhao W, Zhang Y, Du K. Applied Surface Science, 2013, 265(1),149.
25 Dong S A. Precious Metals, 2008, 29(3), 52(in Chinese).
董守安. 贵金属, 2008, 29(3),52.
26 Zhao W B, Zhu J J, Chen H Y. Journal of Crystal Growth, 2003, 258(1),176.
27 Spain E, Mccooey A, Joyce K, et al. Sensors & Actuators B Chemical, 2015, 215,159.
28 Zhao W, Zhang Y, Du K. Applied Surface Science, 2013, 265(1),149.
29 Yan Z, Li B, Yang D, et al. Chinese Journal of Catalysis, 2013, 34(8),1471.
30 Lai W. Anti-micelle—hydrothermal synthesis of hydroxyapatite nanowires and its mechanism. Ph.D. Thesis, Hunan University, China, 2006(in Chinese)
赖琛. 反胶团—热液法合成羟基磷灰石纳米线及其机理研究. 博士学位论文,湖南大学, 2006.
31 Jia Y, Zhang L, Song L, et al. Langmuir, 2017, 33(46),13376
32 Satti A, Damian Aherne A, Fitzmaurice D. Chemistry of Materials, 2007, 19(7),1543.
33 Mohammadzadegan R, Mohabatkar H, Sheikhi M H, et al. Physica E: Low-dimensional Systems and Nanostructures, 2008, 41(1),142.
34 Kim H J, Roh Y, Hong B. Langmuir: the ACS Journal of Surfaces & Colloids, 2010, 26(23), 18315.
35 Patolsky F, Zheng G, Lieber C M. Nanomedicine, 2006, 1(1), 51.
36 Weizamann Y, Patolsky F, Innapopov A, et al. Nano Letters, 2004, 4(5),787.
37 Kim J H, Lee B H, Moon T H. U.S. Patent 7932110, 2011.
38 Pazosp Rez N, Baranov D, Irsen S, et al. Langmuir, 2008, 24(17),9855.
39 Zhang D B, Qi L M, Cheng H M, et al. Chemical Journal of Chinese Universities, 2003, 24(12),2143(in Chinese).
张冬柏, 齐利民, 程虎民,等. 高等学校化学学报, 2003, 24(12),2143.
40 Pang Shufeng, Jia Yawei. Chemical Reagents, 2010, 32(10),865(in Chinese).
庞树峰, 贾亚伟. 化学试剂, 2010, 32(10),865.
41 Morita-Imura C, Mori T, Imura Y, et al.New Journal of Chemistry, 2016, 40(8),7048.
42 Che R C, Liang C Y, Zhou X G, et al. Chinese Journal of Chemical Physics, 2007, 20(6), 680.
43 Wang J, Bunimovich Y L, Sui G, et al. Chemical Communications, 2006, 29(29), 3075.
44 Xu B. Research on assembly and arrangement of zero-dimensional and one-dimensional nanomaterials by LB (Langmuir-Blodgett) technology. Master's Thesis, Shanghai Jiaotong University, China, 2008(in Chinese).
徐斌. 利用LB(Langmuir-Blodgett)技术对零维、一维纳米材料进行组装排布的研究. 硕士学位论文,上海交通大学, China, 2008.
45 Li Z T, Liu L P, Li H X, et al. Journal of Donghua University(Natural Science), 2013, 39(5), 628(in Chinese).
李忠涛, 刘水平, 李宏喜,等. 东华大学学报(自然科学版), 2013, 39(5),628.
46 Dertle E, Coskun S, Esenturk E N. Journal of Materials Research, 2013, 28(2),250.
47 Liu Z, Season P C. Journal of Physical Chemistry B, 2006, 110(9),4318.
48 Lu Y S. Preparation of metal nanowires and their application in electrochemical biosensors. Master's Thesis, Hunan University, China, 2007(in Chinese).
鲁亚霜. 金属纳米线制备及其在电化学生物传感器中应用,硕士学位论文, 湖南大学, 2007.
49 Lu X X. Preparation of nanoelectrode assembly and its application in electrochemical and biosensors. Master's Thesis, Yunnan Normal University, China, 2008(in Chinese).
卢旭晓. 纳米电极集合的制备及其在电化学、生物传感器中的应用. 硕士学位论文,云南师范大学, 2008.
50 Peng R F. One-dimensional nanomaterial electrochemical biosensing research. Master's Thesis, Xiangtan University, China, 2014(in Chinese).
彭任富. 一维纳米材料电化学生物传感研究. 硕士学位论文, 湘潭大学, 2014.
51 Sadeghian R B, Kahrizi M. In: 2007 IEEE International Symposium on Industrial Electronics. Vigo,Spain, 2007,pp.1387.
52 Schouteden K, Lijnen E, Muzychenko D A, et al. Nanotechnology, 2009, 20(39), 395401.
53 Joshi K A, Tang J, Haddon R, et al. Electroanalysis, 2010, 17(1),54.
54 Kia M, Islamnezhad A, Shariati S, et al. Korean Journal of Chemical Engineering, 2011, 28(10),2064.
55 Kim G Y, Shim J, Kang M S, et al. Journal of Hazardous Materials, 2008, 156(1),141.
56 Park B W, Kim D S, Yoon D Y. Korean Journal of Chemical Enginee-ring, 2011, 28(1), 64.
57 Wang J, Timchalk C, Lin Y. Environmental Science & Technology, 2008, 42(7),2688.
58 Qin L, He L, Zhao J, et al. Sensors & Actuators B Chemical, 2017, 240,779.
59 Cherevko S, Chung C H. Sensors & Actuators B Chemical, 2009, 142(1), 216.
60 Wang Q, Min F, Zhu J. Materials Letters, 2013, 91(2), 9.
61 Aravamudhan S, Ramgir N S, Bhansali S. Sensors & Actuators B Chemical, 2007, 127(1),29.
62 Jamal M, Xu J, Razeeb K M. Biosensors & Bioelectronics, 2011, 26(4),1420.
63 Shin S H, Kim G Y, Shim J, et al. Korean Journal of Chemical Enginee-ring, 2012, 29(12),1666.
64 Kim J, Rheem Y, Yoo B, et al. Acta Biomaterialia, 2010, 6(7), 2681.
65 Han L L, Elvin P, Bernardo J. Journal of Clinical Microbiology, 2012, 50(8), 2592.
66 Liu S F, Li Y F, Li J R, et al. Biosensors & Bioelectronics, 2006, 21(5),789.
67 Ramulu T S, Venu R, Sinha B, et al. Biosensors & Bioelectronics, 2013, 40(1),258.
68 Tien C H, Man T V, Linh H V, et al. International Journal of Nanotechnology, 2015, 12(5),347.
69 Chen Y L, Lee C Y, Chiu H T. Journal of Materials Chemistry B, 2012, 1(2),186.
70 Hil L J M, Lukiw W J. Neurochemical Research, 2016, 41(1-2),96.
71 Liu Z, Zhang A, Sun H, et al. RSC Advances, 2016, 7(10), 6046.
72 Viswambharan V, Thanseem I, Vasu M M, et al. Biomarkers in Medicine, 2017, 11(2), 151.
73 Azimzadeh M, Nasirizadeh N, Rahaie M, et al. RSC Advances, 2017, 7(88),55709.
74 Chem A. Analytical Chemistry, 2002, 74(9),2217.
75 Guo S, Wang E. Journal of Colloid & Interface Science, 2007, 315(2),795.
76 Tripathi V, Kandimalla V, Ju H. Biosensors & Bioelectronics, 2006, 21(8),1529.
77 Wei H, Wang E. Analytical Chemistry, 2008, 80(6),2250.
78 Evans S A, Elliott J M, Andrews L M, et al. Analytical Chemistry, 2002, 74(6),1322.
79 Hasan M. Journal of the Electrochemical Society, 2012, 159(11),B825.
80 Huang Z. Guangdong Chemical Industry, 2016, 43(16), 64(in Chinese).
黄钊.广东化工, 2016, 43(16), 64.
81 Li Y, Zu L, Liu G, et al. Particle & Particle Systems Characterization, 2015, 32(4), 498.
82 Guo S, Wen D, Dong S, et al. Talanta, 2009, 77(4),1510.
83 Guo S, Dong S, Wang E. Small, 2010, 4(8),1133.
84 Guo S, Dong S, Wang E. Chemistry-A European Journal, 2010, 14(15),4689.
85 Guo S, Zhai J, Fang Y, et al. Chemistry-An Asian Journal, 2010, 3(7),1156.
86 Guo Z, Dong S. Analytical Chemistry, 2004, 76(10),2683.
87 Guo S, Dong S, Wang E. Journal of Physical Chemistry C, 2008, 112(7), 2389.
88 Guo S, Wen D, Dong S, et al. Talanta, 2009, 77(4),1510.
89 Mannsfeld S C, Tee B C, Stoltenberg R M, et al. Nature Materials, 2010, 9(10),859.
90 Lipomi D J, Vosgueritchian M, Tee B C, et al. Nature Nanotechnology, 2011, 6(12), 788.
91 Cohen D J, Mitra D, Peterson K, et al. Nano Letters, 2012, 12(4),1821.
92 Matsuzaki R, Keating T, Todoroki A, et al. Sensors & Actuators A Physical, 2008, 148(1),1.
93 Gao Q, Meguro H, Okamoto S, et al. Langmuir, 2012, 28(51),17593.
94 Zhou J, Gu Y, Fei P, et al. Nano Letters, 2008, 8(9),3035.
95 Mandal D, Yoon S, Kim K J. Macromolecular Rapid Communications, 2011, 32(11), 831.
96 Yamada T, Hayamizu Y, Yamamoto Y, et al. Nature Nanotechnology, 2011, 6(5),296.
97 Pang C, Lee G Y, Kim T, et al. Nature Materials, 2012, 11(9),795.
98 Maheshwari V, Saraf R F. Science, 2006, 312(5779),1501.
99 Hu Y, Yang J, Jing Q, et al. ACS Nano, 2013, 7(11),10424.
100 Schwartz G, Tee B C, Mei J, et al. Nature Communications, 2013, 4(5),1859.
101 Gong S, Schwalb W, Wang Y, et al. Nature Communications, 2014, 5(2),3132.
102 Feng H, Yang Y, You Y, et al. Chemical Communications, 2009, 15(15),1984.
103 Hom D, Ling Y, Yap L W, et al. Advanced Functional Materials, 2017, 27(25), 1700845.
[1] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[2] 胡耀强, 陈法锦, 刘海宁, 张慧芳, 吴志坚, 叶秀深. 聚N-异丙基丙烯酰胺水凝胶的制备及热致聚集行为[J]. 《材料导报》期刊社, 2018, 32(14): 2491-2496.
[3] 孙舒鑫, 焦体峰, 张乐欣. 载银纳米颗粒多响应性复合水凝胶研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 62-68.
[4] 吴帅帅, 刘琴, 徐丹. 利用笼形聚倍半硅氧烷增强多壁碳纳米管在水溶液中的分散性[J]. 《材料导报》期刊社, 2017, 31(6): 110-114.
[5] 马明亮, 林静, 万菲, 马衍轩, 冯超, 卢桂霞, 张家栋. 有机-无机杂化一维磁性自组装聚合物纳米链的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 29-33.
[6] 王裕祥,冯传良. 羧基化碳纳米管增强的杂化超分子水凝胶及其物理性能*[J]. 材料导报编辑部, 2017, 31(10): 41-46.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed