Abstract: In addition to the properties of ordinary nanomaterials (surface effect, dielectric confinement effect, small size effect and quantum tunneling effect), gold nanomaterials also have unique stability, electrical conductivity, excellent biocompatibility, supramolecular recognition, fluorescence and other characteristics, which broad their application prospects in the fields of nanoelectronics, optoelectronics, sensing and catalysis, biolabeling and biosensing. Among various forms of gold nanomaterials, the gold nanowires have always been highly valued by researchers. Therefore, exploring new technologies and new methods for preparing gold nanowires and further expanding their application fields are the research focuses in the field of nanomaterials. Gold nanowires have a large aspect ratio, good flexibility and their preparation methods are also relatively simple, thus, they have been extensively adopted in the fields of sensors, microelectronics, optical devices, surface enhanced Raman and biological detection. With the development of technology, researchers have developed a variety of methods for preparing gold nanowires, including template synthesis method, solution method, and edge modification method. However, in recent years, the application requirements in the fields of nanoelectronics and sensors have put forward higher requirements for the preparation of gold nanowires, such as a better morphology (diameter and geometry of gold nanowires) for gold nanowires, the complexity of the method, environmental pollution and production rate. Combining the novel preparation method and application of gold nanowires in the past ten years, this paper reclassifies the preparation methods and regulation methods of gold nanowires, and comprehensively summarizes the application of gold nanowires in the sensing field, in order to provide an overview for researchers.
金嘉炜, 刘传扬, 张冶, 刘国伟, 楚增勇, 李公义. 金纳米线的制备及传感应用研究进展[J]. 材料导报, 2020, 34(5): 5085-5095.
JIN Jiawei, LIU Chuanyang, ZHANG Ye, LIU Guowei, CHU Zengyong, LI Gongyi. Preparation and Application in Sensing Fields of Gold Nanowires. Materials Reports, 2020, 34(5): 5085-5095.
1 Eom G, Kim h, Hwang A, et al. Advanced Functional Materials, 2017, 27(37),1701832. 2 Jung M, Noh H, Doh Y J, et al. ACS Nano, 2011, 5(3),2271. 3 Sahu G, Gordon S W, Tarr M A. RSC Advances, 2011, 2(2),573. 4 Thomas A, Savaliya P, Kumar K, et al. JOSA-B, 2018, 35(7), 1687. 5 Zhu L, Searson P C. Journal of Physical Chemistry B, 2006, 110(9),4318. 6 Vazinishayan A, Yang S, Duongthipthewa A, et al. AIP Advances, 2016, 6(2),025006. 7 Nikolov A S, Nedyalkov N N, Nikovr G, et al. Applied Surface Science, 2014, 302(8), 243. 8 Penner R M, Zach M P, Favier F. U.S. patent, 6843902, 2005. 9 Kraus T, De J N. Langmuir, 2013, 29(26), 8427. 10 Tang Z K. Preparation and research of nanoporous templates and one-dimensional magnetic nanomaterials. Master's Thesis, University of Electronic Science and Technology, China, 2015(in Chinese). 唐中开. 纳米多孔模板和一维磁性纳米材料的制备与研究, 硕士学位论文,电子科技大学, 2015. 11 Hutchinson T O, Liu Y P, Kiely C, et al. Advanced Materials, 2001, 13(23),1800. 12 Zhang H, Lu Z W, Hou J W, et al. Materials Review A: Review Papers, 2016, 30(9),49(in Chinese). 张慧, 芦志伟, 侯军伟, 等.材料导报:综述篇, 2016, 30(9),49. 13 Holubowitch N, Nagle L C, Rohan J F. Solid State Ionics, 2012, 216(20),110. 14 Zhao W U, Zhang Y W, Kaid U. High Power Laser & Particle Beams, 2013, 25(8),2000. 15 Baitimirova M, Pastare A, Katkevics J, et al. Micro & Nano Letters, 2014, 9(11),761. 16 Murphy C J, Jana N R. Advanced Materials, 2002, 14(1),80. 17 Zeng J, Huang J, Lu W, et al. Advanced Materials, 2010, 19(16),2172. 18 Wang T, Zhang D, Xu W, et al. Langmuir, 2002, 18(22),8655. 19 Huang P. Preparation of one-dimensional metal oxide nanomaterials by pulsed laser deposition and its properties. Ph.D. Thesis, Lanzhou University, China, 2014(in Chinese). 黄鹏. 脉冲激光沉积制备一维金属氧化物纳米材料及其性质研究.博士学位论文, 兰州大学, 2014. 20 Lu X X, Bai H P, Yang G M, et al. Materials Review, 2007, 21(s3),138(in Chinese) 卢旭晓, 白慧萍, 杨光明,等.材料导报, 2007, 21(s3),138. 21 Feng Y C, Dong S A, Tang C. Precious Metals, 2007, 28(4), 1(in Chinese). 冯永成, 董守安, 唐春. 贵金属, 2007, 28(4),1. 22 Wirtz M, Martin C R. Advanced Materials, 2010, 15(5),455. 23 Umh H N, Shin H H, Yi J, et al. Korean Journal of Chemical Enginee-ring, 2015, 32(2),299. 24 Zhao W, Zhang Y, Du K. Applied Surface Science, 2013, 265(1),149. 25 Dong S A. Precious Metals, 2008, 29(3), 52(in Chinese). 董守安. 贵金属, 2008, 29(3),52. 26 Zhao W B, Zhu J J, Chen H Y. Journal of Crystal Growth, 2003, 258(1),176. 27 Spain E, Mccooey A, Joyce K, et al. Sensors & Actuators B Chemical, 2015, 215,159. 28 Zhao W, Zhang Y, Du K. Applied Surface Science, 2013, 265(1),149. 29 Yan Z, Li B, Yang D, et al. Chinese Journal of Catalysis, 2013, 34(8),1471. 30 Lai W. Anti-micelle—hydrothermal synthesis of hydroxyapatite nanowires and its mechanism. Ph.D. Thesis, Hunan University, China, 2006(in Chinese) 赖琛. 反胶团—热液法合成羟基磷灰石纳米线及其机理研究. 博士学位论文,湖南大学, 2006. 31 Jia Y, Zhang L, Song L, et al. Langmuir, 2017, 33(46),13376 32 Satti A, Damian Aherne A, Fitzmaurice D. Chemistry of Materials, 2007, 19(7),1543. 33 Mohammadzadegan R, Mohabatkar H, Sheikhi M H, et al. Physica E: Low-dimensional Systems and Nanostructures, 2008, 41(1),142. 34 Kim H J, Roh Y, Hong B. Langmuir: the ACS Journal of Surfaces & Colloids, 2010, 26(23), 18315. 35 Patolsky F, Zheng G, Lieber C M. Nanomedicine, 2006, 1(1), 51. 36 Weizamann Y, Patolsky F, Innapopov A, et al. Nano Letters, 2004, 4(5),787. 37 Kim J H, Lee B H, Moon T H. U.S. Patent 7932110, 2011. 38 Pazosp Rez N, Baranov D, Irsen S, et al. Langmuir, 2008, 24(17),9855. 39 Zhang D B, Qi L M, Cheng H M, et al. Chemical Journal of Chinese Universities, 2003, 24(12),2143(in Chinese). 张冬柏, 齐利民, 程虎民,等. 高等学校化学学报, 2003, 24(12),2143. 40 Pang Shufeng, Jia Yawei. Chemical Reagents, 2010, 32(10),865(in Chinese). 庞树峰, 贾亚伟. 化学试剂, 2010, 32(10),865. 41 Morita-Imura C, Mori T, Imura Y, et al.New Journal of Chemistry, 2016, 40(8),7048. 42 Che R C, Liang C Y, Zhou X G, et al. Chinese Journal of Chemical Physics, 2007, 20(6), 680. 43 Wang J, Bunimovich Y L, Sui G, et al. Chemical Communications, 2006, 29(29), 3075. 44 Xu B. Research on assembly and arrangement of zero-dimensional and one-dimensional nanomaterials by LB (Langmuir-Blodgett) technology. Master's Thesis, Shanghai Jiaotong University, China, 2008(in Chinese). 徐斌. 利用LB(Langmuir-Blodgett)技术对零维、一维纳米材料进行组装排布的研究. 硕士学位论文,上海交通大学, China, 2008. 45 Li Z T, Liu L P, Li H X, et al. Journal of Donghua University(Natural Science), 2013, 39(5), 628(in Chinese). 李忠涛, 刘水平, 李宏喜,等. 东华大学学报(自然科学版), 2013, 39(5),628. 46 Dertle E, Coskun S, Esenturk E N. Journal of Materials Research, 2013, 28(2),250. 47 Liu Z, Season P C. Journal of Physical Chemistry B, 2006, 110(9),4318. 48 Lu Y S. Preparation of metal nanowires and their application in electrochemical biosensors. Master's Thesis, Hunan University, China, 2007(in Chinese). 鲁亚霜. 金属纳米线制备及其在电化学生物传感器中应用,硕士学位论文, 湖南大学, 2007. 49 Lu X X. Preparation of nanoelectrode assembly and its application in electrochemical and biosensors. Master's Thesis, Yunnan Normal University, China, 2008(in Chinese). 卢旭晓. 纳米电极集合的制备及其在电化学、生物传感器中的应用. 硕士学位论文,云南师范大学, 2008. 50 Peng R F. One-dimensional nanomaterial electrochemical biosensing research. Master's Thesis, Xiangtan University, China, 2014(in Chinese). 彭任富. 一维纳米材料电化学生物传感研究. 硕士学位论文, 湘潭大学, 2014. 51 Sadeghian R B, Kahrizi M. In: 2007 IEEE International Symposium on Industrial Electronics. Vigo,Spain, 2007,pp.1387. 52 Schouteden K, Lijnen E, Muzychenko D A, et al. Nanotechnology, 2009, 20(39), 395401. 53 Joshi K A, Tang J, Haddon R, et al. Electroanalysis, 2010, 17(1),54. 54 Kia M, Islamnezhad A, Shariati S, et al. Korean Journal of Chemical Engineering, 2011, 28(10),2064. 55 Kim G Y, Shim J, Kang M S, et al. Journal of Hazardous Materials, 2008, 156(1),141. 56 Park B W, Kim D S, Yoon D Y. Korean Journal of Chemical Enginee-ring, 2011, 28(1), 64. 57 Wang J, Timchalk C, Lin Y. Environmental Science & Technology, 2008, 42(7),2688. 58 Qin L, He L, Zhao J, et al. Sensors & Actuators B Chemical, 2017, 240,779. 59 Cherevko S, Chung C H. Sensors & Actuators B Chemical, 2009, 142(1), 216. 60 Wang Q, Min F, Zhu J. Materials Letters, 2013, 91(2), 9. 61 Aravamudhan S, Ramgir N S, Bhansali S. Sensors & Actuators B Chemical, 2007, 127(1),29. 62 Jamal M, Xu J, Razeeb K M. Biosensors & Bioelectronics, 2011, 26(4),1420. 63 Shin S H, Kim G Y, Shim J, et al. Korean Journal of Chemical Enginee-ring, 2012, 29(12),1666. 64 Kim J, Rheem Y, Yoo B, et al. Acta Biomaterialia, 2010, 6(7), 2681. 65 Han L L, Elvin P, Bernardo J. Journal of Clinical Microbiology, 2012, 50(8), 2592. 66 Liu S F, Li Y F, Li J R, et al. Biosensors & Bioelectronics, 2006, 21(5),789. 67 Ramulu T S, Venu R, Sinha B, et al. Biosensors & Bioelectronics, 2013, 40(1),258. 68 Tien C H, Man T V, Linh H V, et al. International Journal of Nanotechnology, 2015, 12(5),347. 69 Chen Y L, Lee C Y, Chiu H T. Journal of Materials Chemistry B, 2012, 1(2),186. 70 Hil L J M, Lukiw W J. Neurochemical Research, 2016, 41(1-2),96. 71 Liu Z, Zhang A, Sun H, et al. RSC Advances, 2016, 7(10), 6046. 72 Viswambharan V, Thanseem I, Vasu M M, et al. Biomarkers in Medicine, 2017, 11(2), 151. 73 Azimzadeh M, Nasirizadeh N, Rahaie M, et al. RSC Advances, 2017, 7(88),55709. 74 Chem A. Analytical Chemistry, 2002, 74(9),2217. 75 Guo S, Wang E. Journal of Colloid & Interface Science, 2007, 315(2),795. 76 Tripathi V, Kandimalla V, Ju H. Biosensors & Bioelectronics, 2006, 21(8),1529. 77 Wei H, Wang E. Analytical Chemistry, 2008, 80(6),2250. 78 Evans S A, Elliott J M, Andrews L M, et al. Analytical Chemistry, 2002, 74(6),1322. 79 Hasan M. Journal of the Electrochemical Society, 2012, 159(11),B825. 80 Huang Z. Guangdong Chemical Industry, 2016, 43(16), 64(in Chinese). 黄钊.广东化工, 2016, 43(16), 64. 81 Li Y, Zu L, Liu G, et al. Particle & Particle Systems Characterization, 2015, 32(4), 498. 82 Guo S, Wen D, Dong S, et al. Talanta, 2009, 77(4),1510. 83 Guo S, Dong S, Wang E. Small, 2010, 4(8),1133. 84 Guo S, Dong S, Wang E. Chemistry-A European Journal, 2010, 14(15),4689. 85 Guo S, Zhai J, Fang Y, et al. Chemistry-An Asian Journal, 2010, 3(7),1156. 86 Guo Z, Dong S. Analytical Chemistry, 2004, 76(10),2683. 87 Guo S, Dong S, Wang E. Journal of Physical Chemistry C, 2008, 112(7), 2389. 88 Guo S, Wen D, Dong S, et al. Talanta, 2009, 77(4),1510. 89 Mannsfeld S C, Tee B C, Stoltenberg R M, et al. Nature Materials, 2010, 9(10),859. 90 Lipomi D J, Vosgueritchian M, Tee B C, et al. Nature Nanotechnology, 2011, 6(12), 788. 91 Cohen D J, Mitra D, Peterson K, et al. Nano Letters, 2012, 12(4),1821. 92 Matsuzaki R, Keating T, Todoroki A, et al. Sensors & Actuators A Physical, 2008, 148(1),1. 93 Gao Q, Meguro H, Okamoto S, et al. Langmuir, 2012, 28(51),17593. 94 Zhou J, Gu Y, Fei P, et al. Nano Letters, 2008, 8(9),3035. 95 Mandal D, Yoon S, Kim K J. Macromolecular Rapid Communications, 2011, 32(11), 831. 96 Yamada T, Hayamizu Y, Yamamoto Y, et al. Nature Nanotechnology, 2011, 6(5),296. 97 Pang C, Lee G Y, Kim T, et al. Nature Materials, 2012, 11(9),795. 98 Maheshwari V, Saraf R F. Science, 2006, 312(5779),1501. 99 Hu Y, Yang J, Jing Q, et al. ACS Nano, 2013, 7(11),10424. 100 Schwartz G, Tee B C, Mei J, et al. Nature Communications, 2013, 4(5),1859. 101 Gong S, Schwalb W, Wang Y, et al. Nature Communications, 2014, 5(2),3132. 102 Feng H, Yang Y, You Y, et al. Chemical Communications, 2009, 15(15),1984. 103 Hom D, Ling Y, Yap L W, et al. Advanced Functional Materials, 2017, 27(25), 1700845.