Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 110-114    https://doi.org/10.11896/j.issn.1005-023X.2017.06.022
  材料研究 |
利用笼形聚倍半硅氧烷增强多壁碳纳米管在水溶液中的分散性
吴帅帅, 刘琴, 徐丹
西南大学食品科学学院, 重庆 400715
Improved Dispersibility of Multi-walled Carbon Nanotubes in Aqueous
Solution by Polyhedral Oligomeric Silsesquioxane
WU Shuaishuai, LIU Qin, XU Dan
College of Food Science, Southwest University, Chongqing 400715
下载:  全 文 ( PDF ) ( 1739KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以笼形聚倍半硅氧烷(POSS)为物理分散剂,利用POSS与多壁碳纳米管(MWNTs)间较强的相互作用,在水溶液中对MWNTs进行分散。借助紫外吸光度对POSS分散的MWNTs浓度和稳定性进行了表征,测定了分散液的Zeta电位和离心后上清液中固体物质的质量分数,并用透射电镜观察了POSS与MWNTs间的结合情况。结果表明,POSS可以显著提高 MWNTs在水溶液中的分散性,且提高程度与其有机官能团R的结构有关。在所采用的五种POSS中,八异丁基笼形聚倍半硅氧烷(POSSC)的分散效果最好。在此基础上,优化得到POSSC分散MWNTs的最佳条件,即MWNTs浓度为30 mg/L,POSSC和MWNTs的质量比为1。此时,POSSC可较好地吸附在MWNTs表面对其进行分散,得到具有良好稳定性的MWNTs水分散液。该分散方法简单高效且不破坏MWNTs的完整结构,所得分散液可用于复合材料的制备。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴帅帅
刘琴
徐丹
关键词:  多壁碳纳米管  笼形聚倍半硅氧烷  分散性  水溶液    
Abstract: Polyhedral oligomeric silsesquioxane (POSS) was used as a physical dispersant to disperse multi-walled carbon nanotubes (MWNTs) in aqueous solution based on their strong interactions. The concentration and stability of MWNTs/POSS aqueous dispersion were characterized by UV-Vis absorbance. Zeta potentials of the aqueous dispersion and weight percentage of the supernatant after centrifugation were measured, while transmission electron microscope (TEM) was used to observe the conjugation state of POSS and MWNTs. Results showed that dispersion capability and stability of MWNTs in aqueous solution were significantly improved by POSS, whereas the dispersion efficiency largely depended on the structure of R organic groups. Among the five kinds of POSS investigated in this study, octaisobutyl POSS (POSSC) presented the best dispersion effects on MWNTs. On this basis, the optimized conditions to disperse MWNTs by POSSC were found out to be: MWNTs concentration of 30 mg/L and the weight ratio between POSS and MWNTs of 1. Under these conditions, POSSC can be well adsorbed onto MWNTs surface, resulting in stable MWNTs/POSS aqueous dispersion. This dispersion method is facile, effective and nondestructive, and the obtained MWNTs/POSS dispersion can be used for nanocomposite construction.
Key words:  multi-walled carbon nanotube (MWNT)    polyhedral oligomeric silsesquioxane (POSS)    dispersibility    aqueous solution
出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TB127.1  
  O648.14  
基金资助: 国家自然科学基金青年基金(21306154);高等学校博士学科点专项科研基金资助课题(20130182120028)
通讯作者:  徐丹:女,1983年生,博士,副教授,研究方向为纳米复合包装材料,E-mail:xud@swu.edu.cn   
作者简介:  吴帅帅:女,1990年生,硕士研究生,研究方向为食品包装材料,E-mail:wushuaishuai2014@foxmail.com
引用本文:    
吴帅帅, 刘琴, 徐丹. 利用笼形聚倍半硅氧烷增强多壁碳纳米管在水溶液中的分散性[J]. 《材料导报》期刊社, 2017, 31(6): 110-114.
WU Shuaishuai, LIU Qin, XU Dan. Improved Dispersibility of Multi-walled Carbon Nanotubes in Aqueous
Solution by Polyhedral Oligomeric Silsesquioxane. Materials Reports, 2017, 31(6): 110-114.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.022  或          https://www.mater-rep.com/CN/Y2017/V31/I6/110
1 Chen G X, Shimizu H. Multiwalled carbon nanotubes grafted with polyhedral oligomeric silsesquioxane and its dispersion in poly(L-lactide) matrix[J]. Polymer,2008,49(4):943.
2 Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young′s modulus observed for individual carbon nanotubes[J]. Nature,1996,381(6584):678.
3 Li J, Liu J C, Gao C J. On the mechanism of conductivity enhancement in PEDOT/PSS film doped with multi-walled carbon nanotubes[J]. J Polym Res,2010,17(5):713.
4 Ryu J, Han M. Improvement of the mechanical and electrical pro-perties of polyamide 6 nanocomposites by non-covalent functionalization of multi-walled carbon nanotubes[J]. Compos Sci Technol,2014,102:169.
5 Young R J, Deng L B, Wafy T Z, et al. Interfacial and internal stress transfer in carbon nanotube based nanocomposites[J]. J Mater Sci,2016,51(1):344.
6 Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes-The route toward applications[J]. Science,2002,297(5582):787.
7 Majeed S, Filiz V, Shishatskiy S, et al. Pyrene-POSS nanohybrid as a dispersant for carbon nanotubes in solvents of various polarities: Its synthesis and application in the preparation of a composite membrane[J]. Nanosc Res Lett,2012,7(1):296.
8 Kharissova O V, Kharisov B I, de Casas Ortiz E G. Dispersion of carbon nanotubes in water and non-aqueous solvents[J]. RSC Adv,2013,3(47):24812.
9 Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of carbon nanotubes[J]. Chem Rev,2006,106(3):1105.
10 Madni I, Hwang C Y, Park S D, et al. Mixed surfactant system for stable suspension of multiwalled carbon nanotubes[J]. Colloids Surf A:Physicochem Eng Asp,2010,358(1-3):101.
11 Clark M D, Subramanian S, Krishnamoorti R. Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes[J]. J Colloid Interface Sci,2011,354(1):144.
12 Bai Y, Lin D, Wu F, et al. Adsorption of Triton X-series surfactants and its role in stabilizing multi-walled carbon nanotube suspensions[J]. Chemosphere,2010,79(4):362.
13 Tkalya E E, Ghislandi M, de With G, et al. The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites[J]. Curr Opin Colloid Interface Sci,2012,17(4):225.
14 Ghanbari H,Cousins B G, Seifalian A M.A nanocage for nanomedi-cine: Polyhedral oligomeric silsesquioxane (POSS)[J]. Macromol Rapid Commun,2011,32(14):1032.
15 Damian C M, Ciobotaru C C, Garea S A, et al. Effect of POSS-NH2 functionalization of MWNTs on reinforcing properties in epoxy nanocomposites[J]. High Perform Polym,2013,25(5):566.
16 Munkhbayar B, Nine M J, Jeoun J, et al. Influence of dry and wet ball milling on dispersion characteristics of the multi-walled carbon nanotubes in aqueous solution with and without surfactant[J]. Powder Technol,2013,234:132.
17 Shao D D, Hu J, Wang X K, et al. Plasma induced grafting multiwall carbon nanotubes with chitosan for 4,4′-dichlorobiphenyl removal from aqueous solution[J]. Chem Eng,2011,170(2-3):498.
18 Wang B M, Han Y, Ge S G, et al. Research on the dispersibility and mechanism of carbon nanotubes in aqueous solution[J].J Harbin Eng Univ,2014,35(10):1206(in Chinese).
王宝民, 韩瑜, 葛树根, 等. 碳纳米管在水性体系中的分散性能及机理[J]. 哈尔滨工业大学学报,2014,35(10):1206.
19 Rausch J, Zhuang R C, Maeder E. Surfactant assisted dispersion of functionalized multi-walled carbon nanotubes in aqueous media[J]. Composites Part A,2010,41(9):1038.
20 Greenwood R,Kendall K.Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis[J]. J Eur Ceram Soc,1999,19(4):479.
21 Widegren J, Bergstrom L. The effect of acids and bases on the dispersion and stabilization of ceramic particles in ethanol[J]. J Eur Ceram Soc,2000,20(6):659.
[1] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[2] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[3] 李晓丹, 刘宏宇, 何瑞, 王锋. 石墨烯改性及在有机涂层中的形态[J]. 材料导报, 2023, 37(17): 21100195-9.
[4] 朱建平, 张素娟, 高飞, 张文艳. CNTs@SiO2核壳结构纳米线对水泥力学性能及微观结构的影响[J]. 材料导报, 2023, 37(16): 22010225-6.
[5] 刘忠柱, 赵伟, 潘玮, 李睢水, 郑国强, 李倩. 多壁碳纳米管改性等规聚丙烯复合材料的结构及性能研究[J]. 材料导报, 2023, 37(1): 20100004-6.
[6] 陈景, 杨长辉, 高育欣, 杨文, 王福涛, 刘明, 曾超. 微交联降粘型聚羧酸减水剂的合成及其在低水胶比体系中的作用[J]. 材料导报, 2022, 36(9): 20090167-8.
[7] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[8] 李威霖, 王佳, 焦剑. Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响[J]. 材料导报, 2022, 36(5): 20110094-6.
[9] 王延杰, 赵世界, 盛俊杰, 汝杰, 赵春, 李树勇. MWCNT/Nafion/MWCNT复合材料的湿度传感性能研究[J]. 材料导报, 2022, 36(20): 21060183-9.
[10] 徐建林, 王涛, 康成虎, 杨文龙, 牛磊. 阻燃剂研究与应用进展及问题思考[J]. 材料导报, 2022, 36(10): 20110227-9.
[11] 孙国文, 张营, 闫娜, 王亚倩, 李占华. 水下不分散混凝土的抗分散性能设计及其表征研究进展[J]. 材料导报, 2022, 36(1): 20040167-11.
[12] 赵中国, 贾旭妙, 程少华, 王渺, 梁攀旭, 李万顺, 贾仕奎. 聚丙烯/碳纳米管复合材料的结晶性能以及外场响应行为[J]. 材料导报, 2021, 35(8): 8191-8195.
[13] 熊亚, 江猛, 李宜航, 吴江兵, 杨航, 熊玉竹. 白炭黑负载抗氧剂在天然橡胶中的分散性及防老化作用[J]. 材料导报, 2021, 35(6): 6200-6205.
[14] 汤琦, 颜桐桐, 孙豪, 王小蕾, 王春芙, 宗成中. 动态硫化制备多壁碳纳米管/热塑性硫化胶复合材料的相态结构及热电效应[J]. 材料导报, 2021, 35(6): 6206-6211.
[15] 孙国文, 王朋硕, 张营, 闫娜. 水下不分散混凝土性能的研究进展[J]. 材料导报, 2021, 35(3): 3092-3103.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed