Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (14): 2491-2496    https://doi.org/10.11896/j.issn.1005-023X.2018.14.030
  高分子与聚合物基复合材料 |
聚N-异丙基丙烯酰胺水凝胶的制备及热致聚集行为
胡耀强1,2, 陈法锦1, 刘海宁2,3, 张慧芳2,3, 吴志坚2,3, 叶秀深2,3
1 广东海洋大学海洋与气象学院,湛江 524088;
2 中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效利用重点实验室,西宁 810008;
3 青海省盐湖资源化学重点实验室,西宁 810008
Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior
HU Yaoqiang1,2, CHEN Fajin1, LIU Haining2,3, ZHANG Huifang2,3, WU Zhijian2,3, YE Xiushen2,3
1 College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088;
2 Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008;
3 Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining 810008
下载:  全 文 ( PDF ) ( 3008KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以异丙基丙烯酰胺(NIPAM)为单体、N,N’-亚甲基双丙烯酰胺(MBA)为交联剂、过硫酸钾(KPS)为引发剂,采用无皂乳液聚合法制备聚N-异丙基丙烯酰胺(PNIPAM),考察了聚合时间、温度、浓度、pH值、共存NaCl和MgCl2浓度对PNIPAM热致聚集行为的影响,并通过扫描电镜(SEM)、红外光谱(FTIR)等手段对PNIPAM的形貌和分子结构进行了表征。结果表明:线型PNIPAM更易在水中稳定存在,采用无皂乳液聚合技术制备PNIPAM过程简单、易操作,产物温敏效应明显。PNIPAM的热致聚集行为随聚合时间的延长、PNIPAM悬浊液浓度的增加、pH值的减小、共存盐浓度的增大而更为显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡耀强
陈法锦
刘海宁
张慧芳
吴志坚
叶秀深
关键词:  温敏效应  PNIPAM  NIPAM  水凝胶    
Abstract: The PNIPAM hydrogels were prepared by emulsifier-free emulsion polymerization method, using NIPAM as monomer, MBA as crosslinking agent and KPS as initiator. Morphology and molecular structure of PNIPAM were examined by SEM and FTIR measurements. The influences of polymerization time, temperature, concentration, pH, coexisted NaCl and MgCl2 on the thermally induced aggregation behavior were comprehensively investigated. The results indicated that this method is simple and easy to operate, and the obtained hydrogel has an obvious thermal-responsive effect. Its thermally induced aggregation behavior becomes more significant with the extension of polymerization time. The thermally induced aggregation behavior of PNIPAM becomes more obvious with the increase of polymerization time, PNIPAM concentration and coexisted salt concentration, or the decrease of pH.
Key words:  thermo-responsive    PNIPAM    NIPAM    hydrogel
               出版日期:  2018-07-25      发布日期:  2018-07-31
ZTFLH:  O648.17  
基金资助: 国家自然科学基金(U1507104;51403229;21401209);青海省基础研究计划项目(2018-ZJ-706);中国科学院西部之光人才项目;中国科学院青年创新促进会人才项目;广东海洋大学创新强校项目(GDOU2014050201)
通讯作者:  叶秀深,男,1981年生,副研究员,研究方向为吸附材料 Tel:0971-6121602 E-mail:yexs@isl.ac.cn   
作者简介:  胡耀强:男,1989年生,博士,讲师,研究方向为吸附材料 Tel:0759-2396055 E-mail:yaoqiang.h@163.com
引用本文:    
胡耀强, 陈法锦, 刘海宁, 张慧芳, 吴志坚, 叶秀深. 聚N-异丙基丙烯酰胺水凝胶的制备及热致聚集行为[J]. 《材料导报》期刊社, 2018, 32(14): 2491-2496.
HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior. Materials Reports, 2018, 32(14): 2491-2496.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.14.030  或          http://www.mater-rep.com/CN/Y2018/V32/I14/2491
1 Tang C, Feller L, Rossbach P, et al. Adsorption and electrically stimulated desorption of the triblock copolymer poly(propylene sulfide-bl-ethylene glycol) (PPS-PEG) from indium tin oxide (ITO) surfaces[J]. Surface Science,2006,600(7):1510.
2 Hu X Y, Chen Y B, Liang H X, et al. Preparation of pressure responsive hollow fiber membrane by melt-spinning of polyurethane-poly(vinylidene fluoride)-poly(ethylene glycol) blends[J]. Materials and Manufacturing Process,2010,25:1018.
3 Gao W W, Chan J M, Farokhzad O C. pH-responsive nanoparticles for drug delivery[J]. Molecular Pharmaceutics,2010,7(6):1913.
4 Saidi L, Vilela C, Oliveira H, et al. Poly(N-methacryloyl glycine)/nanocellulose composites as pH-sensitive systems for controlled release of diclofenac[J]. Carbohydrate Polymers,2017,169:357.
5 Zhang R S, Tang M G, Bowyer A, et al. A novel pH-and ionic-strength-sensitive carboxy methyl dextran hydrogel[J]. Biomate-rials,2005,26(22):4677.
6 Luo Y F, Yu X H. Light and electrically responsive materials based on aligned carbon nanotubes[J]. European Polymer Journal,2016,82:290.
7 Fujishige S, Kubota K, Ando I. Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide)[J]. The Journal of Physical Chemistry,1989,93(8):3311.
8 Meyer D E, Shin B C, Kong G A, et al. Drug targeting using thermally responsive polymers and local hyperthermia[J]. Journal of Controlled Release,2001,74(1-3):213.
9 Chung J E, Yokoyama M, Yamato M, et al. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate)[J]. Journal of Controlled Release,1999,62(1-2):115.
10 Chilkoti A, Dreher M R, Meyer D E, et al. Targeted drug delivery by thermally responsive polymers[J]. Advanced Drug Delivery Reviews,2002,54(5):613.
11 Liu Y F, Yang Y L, Wang C, et al. Stimuli-responsive self-assembling peptides made from antibacterial peptides[J]. Nanoscale,2013,5(14):6413.
12 Lou S F, Gao S, Wang W W, et al. Galactose-functionalized multi-responsive nanogels for hepatoma-targeted drug delivery[J]. Nanoscale,2015,7(7):3137.
13 Tokarev I, Minko S. Stimuli-responsive porous hydrogels at Interfaces for molecular filtration, separation, controlled release, and gating in capsules and membranes[J]. Advanced Materials,2010,22(31):3446.
14 Sosnik A, Cohn D. Reverse thermo-responsive poly(ethylene oxide) and poly(propylene oxide) multiblock copolymers[J]. Biomaterials,2005,26(4):349.
15 Ci J L, Kang H L, Liu C G, et al. Thermal sensitivity and protein anti-adsorption of hydroxypropyl cellulose-g-poly(2-(methacryloyloxy) ethyl phosphorylcholine)[J]. Carbohydrate Polymers,2017,157:757.
16 Pelton R H, Chibante P. Preparation of aqueous lattices with N-isopropylacrylamide[J]. Colloids and Surfaces,1986,20(3):247.
17 Zhao X J, Gao Z F. Role of hydrogen bonding in solubility of poly(N-isopropylacrylamide) brushes in sodium halide solutions[J]. Chinese Physics B,2016,25(7):074703.
18 Dong Q J, Qian M J, Luo C H. Phase separation behavior and fluorescence properties of poly(N-isopropylacrylamide) with chalcone side groups in mixed solvents[J]. Journal of Polymer Research,2016,23(2):33.
19 Hiruta Y, Nagumo Y, Suzuki Y, et al. The effects of anionic electrolytes and human serum albumin on the LCST of poly(N-isopropylacrylamide)-based temperature-responsive copolymers[J]. Colloids and Surface B Biointerfaces,2015,132:299.
20 Costa M C M, Silva S M C, Antunes F E. Adjusting the low critical solution temperature of poly(N-isopropyl acrylamide) solutions by salts, ionic surfactants and solvents: A rheological study[J]. Journal of Molecular Liquids,2015,210:113.
21 Li J J, Zhou Y N, Luo Z H. Thermo-responsive brush copolymers with structure-tunable LCST and switchable surface wettability[J]. Polymer,2014,55(25):6552.
22 Grant N C, Cooper A I, Zhang H F. Uploading and temperature-controlled release of polymeric colloids via hydrophilic emulsion-templated porous polymers[J]. ACS Applied Materials and Interfaces,2010,2(5):1400.
23 Pan K, Zhang X W, Cao B. Surface-initiated atom transfer radical polymerization of regenerated cellulose membranes with thermo-responsive properties[J]. Polymer International,2010,59(6):733.
24 Yu Y L, Zhang M J, Xie R, et al. Thermo-responsive monodisperse core-shell microspheres with PNIPAM core and biocompatible porous ethyl cellulose shell embedded with PNIPAM gates[J]. Journal of Colloid and Interface Science,2012,376:97.
25 Kumar S, Dory Y L, Lepage M, et al. Surface-grafted stimuli-responsive block copolymer brushes for the thermo-, photo-and pH-sensitive release of dye molecules[J]. Macromolecules,2011,44(18):7385.
26 Meng T, Xie R, Chen Y C, et al. A thermo-responsive affinity membrane with nano-structured pores and grafted poly(N-isopropylacrylamide) surface layer for hydrophobic adsorption[J]. Journal of Membrane Science,2010,349(1-2):258.
27 Trzebicka B, Robak B, Trzcinska R, et al. Thermosensitive PNIPAM-peptide conjugate-synthesis and aggregation[J]. European Polymer Journal,2013,49(2):499.
28 Lemanowicz M, Kuznik W, Gibas M, et al. Impact of heating me-thod on the flocculation process using thermosensitive polymer[J]. Water Research,2012,46(13):4091.
29 Zhou J H, Chen X, Ma J Z. Synthesis of cationic fluorinated polyacrylate copolymer by RAFT emulsifier-free emulsion polymerization and its application as waterborne textile finishing agent[J]. Dyes and Pigments,2017,139:102.
30 Yang X Y, Tong Y Y, Li Z C, et al. Aggregation-induced microgelation: A new approach to prepare gels in solution[J]. Soft Matter,2011,7(3):978.
31 Wang Q W, Tang H, Wu P Y. Aqueous solutions of poly(ethylene oxide)-poly(N-isopropylacrylamide): Thermosensitive behavior and distinct multiple assembly processes[J]. Langmuir,2015,31(23):6497.
32 Kurzhals S, Gal N, Zirbs R, et al. Aggregation of thermoresponsive core-shell nanoparticles: Influence of particle concentration, dispersant molecular weight and grafting[J]. Journal of Colloid and Interface Science,2017,500:321.
33 Katono H, Maruyama A, Sanui K, et al. Thermo-responsive swel-ling and drug release switching of interpenetrating polymer networks composed of poly(acrylamide-co-butyl methacrylate) and poly (acry-lic acid)[J]. Journal of Controlled Release,1991,16(1-2):215.
34 Tu C W, Kuo S W. Using FTIR spectroscopy to study the phase transitions of poly(N-isopropylacrylamide) in tetrahydrofuran-d8/D2O[J]. Journal of Polymer Research,2014,21(6):476.
35 Singh R, Deshmukh S A, Kamath G, et al. Controlling the aqueous solubility of PNIPAM with hydrophobic molecular units[J]. Computational Materials Science,2017,126:191.
36 Lemanowicz M, Sulc R, Gierczycki A, et al. Impact of the heating rate on the thermosensitive aggregation: Experimental results and mathematical model[J]. Chemical Engineering Research and Design,2015,98:168.
37 Lemanowicz M. Thermosensitive aggregation under conditions of repeated heating-cooling cycles[J]. International Journal of Mineral Processing,2015,144:26.
38 Min M H, Shen L D, Hong G S, et al. Micro-nano structure poly(ether sulfones)/poly(ethyleneimine) nanofibrous affinity membranes for adsorption of anionic dyes and heavy metal ions in aqueous solution[J]. Chemical Engineering Journal,2012,197:88.
39 Wang T, Turhan M, Gunasekaran S. Selected properties of pH-sensitive, biodegradable chitosan-poly(vinyl alcohol) hydrogel[J]. Polymer International,2004,53(7):911.
40 Hu Y Q, Guo T, Ye X S, et al. Dye adsorption by resins: Effect of ionic strength on hydrophobic and electrostatic interactions[J]. Chemical Engineering Journal,2012,228:392.
41 Jamesh M I, Wu G S, Zhao Y, et al. Electrochemical corrosion behavior of biodegradable Mg-Y-RE and Mg-Zn-Zr alloys in Ringer’s solution and simulated body fluid[J]. Corrosion Science,2015,91:160.
[1] 兰军, 刘乔, 陈重一. 一步法制备高强度自修复聚丙烯酸/聚烯丙基胺聚电解质水凝胶及其性能研究[J]. 材料导报, 2019, 33(8): 1412-1415.
[2] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[3] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[4] 于坤, 韩晓东, 何丽华, 贾庆明, 陕绍云, 苏红莹. 用于药物载体系统的多糖材料的修饰方法[J]. 材料导报, 2019, 33(3): 510-516.
[5] 薛雅楠, 韩政学, 李爽然, 张佳宇, 张雪慧, 王兆伟, 贾瑞洁, 王艳芹, 武晓刚, 李晓娜, 陈维毅. 纳米材料掺杂型聚乙烯醇双交联复合水凝胶的力-化学性质[J]. 材料导报, 2019, 33(10): 1745-1751.
[6] 吴称意, 李聪, 张旭, 程超, 吴少尉, 周倩, 覃姗姗. 超声辅助合成多孔pH敏感性海藻酸钠水凝胶及其控释行为[J]. 《材料导报》期刊社, 2018, 32(7): 1187-1191.
[7] 姚一军,王鸿儒. 纤维素化学改性的研究进展[J]. 材料导报, 2018, 32(19): 3478-3488.
[8] 王志芳,宣承楷,刘雪敏,施雪涛. 环糊精衍生物水凝胶材料的研究进展[J]. 材料导报, 2018, 32(19): 3456-3464.
[9] 王德玄, 王磊, 于良民. 三维结构聚丙烯酰胺/聚乙烯醇水凝胶的合成及其在超级电容器中的应用[J]. 材料导报, 2018, 32(17): 2907-2911.
[10] 王静,刘红科,刘平生,李利. 高强度水凝胶纳米复合材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 67-75.
[11] 黄婧欣, 曾楚楚, 郭明. 新型温敏网络半互穿多孔水凝胶的制备及其固定化酶的研究*[J]. 《材料导报》期刊社, 2017, 31(21): 158-163.
[12] 孙舒鑫, 焦体峰, 张乐欣. 载银纳米颗粒多响应性复合水凝胶研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 62-68.
[13] 林皓, 胡家朋, 刘瑞来, 饶瑞晔. 纤维素纳米纤维接枝聚丙烯酸pH响应水凝胶的制备及性能*[J]. 《材料导报》期刊社, 2017, 31(18): 55-58.
[14] 韩晓东, 张稳, 于坤, 贾庆明, 陕绍云, 苏红莹. 磁性水凝胶作为药物载体的应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 30-35.
[15] 王裕祥,冯传良. 羧基化碳纳米管增强的杂化超分子水凝胶及其物理性能*[J]. 材料导报编辑部, 2017, 31(10): 41-46.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed