Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (14): 2486-2490    https://doi.org/10.11896/j.issn.1005-023X.2018.14.029
  高分子与聚合物基复合材料 |
一种新型的α-氨基酸荧光传感器及其在酶活性检测中的应用
程晓红1, 屈少华2, 钟志成1
1 湖北文理学院低维光电材料与器件湖北省重点实验室,襄阳 441053;
2 湖北文理学院物理与电子工程学院,襄阳 441053
A Novel Fluorescent Chemosensor for α-Amino Acids and Its Application for the Detection of Protease
CHENG Xiaohong1, QU Shaohua2, ZHONG Zhicheng1
1 Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices,Hubei University of Arts and Science,Xiang-yang 441053;
2 School of Physics and Electronic Engineering, Hubei University of Arts and Science, Xiangyang 441053
下载:  全 文 ( PDF ) ( 2029KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用香豆素衍生物与铜离子形成配合物C1-Cu(Ⅱ),其可通过置换法检测α-氨基酸。在配合物C1-Cu(Ⅱ)的溶液中加入α-氨基酸后,表现出明显的荧光增强响应。其中,配合物C1-Cu(Ⅱ)对组氨酸的响应最灵敏,加入过量的组氨酸之后,体系在490 nm处的荧光强度增强了约135倍,而且荧光强度的变化与组氨酸浓度在一定范围内呈现较好的线性关系,通过计算可知,该配合物可实现对组氨酸的定量检测。由于胰蛋白酶可催化牛血清白蛋白水解生成α-氨基酸,因此,以牛血清白蛋白为酶基底,配合物C1-Cu(Ⅱ)亦可作为胰蛋白酶的荧光传感器,从而实现无需标记即可对胰蛋白酶进行特异性检测。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程晓红
屈少华
钟志成
关键词:  置换法  荧光增强  α-氨基酸  蛋白酶  水溶性    
Abstract: Complex C1-Cu(Ⅱ) could act as a new displacement-based fluorescent probe for α-amino acids detection. Upon the addition of α-amino acids, it displayed marked changes from non-fluorescence to strongly green fluorescence which could be observed by naked-eyes under a normal UV lamp. Especially, histidine exhibited the highest sensitivity: the fluorescent intensity increased to ~135-fold of the original one with the addition of excess histidine. Moreover, the intensity change at 490 nm was almost linear with the concentrations of histidine. Furthermore, as the hydrolysis of bovine serum albumin (BSA) with the aid of trypsin produces α-amino acids, the complex of C1-Cu(Ⅱ) with BSA could serve as a label-free, selective, fluorescent sensor toward trypsin with “turn-on” fluorescent methods.
Key words:  displacement approach    fluorescence enhancement    α-amino acids    protease    solubility
               出版日期:  2018-07-25      发布日期:  2018-07-31
ZTFLH:  O622.4  
基金资助: 国家自然科学基金(21502047);湖北省自然科学基金(2018CFB454);“机电汽车”湖北省优势特色学科群开放基金(XKQ2018032)
作者简介:  程晓红:1986年生,博士,讲师,主要从事新型化学与生物传感器的设计合成与性能研究 E-mail:chengxiaohong0807@126.com
引用本文:    
程晓红, 屈少华, 钟志成. 一种新型的α-氨基酸荧光传感器及其在酶活性检测中的应用[J]. 《材料导报》期刊社, 2018, 32(14): 2486-2490.
CHENG Xiaohong, QU Shaohua, ZHONG Zhicheng. A Novel Fluorescent Chemosensor for α-Amino Acids and Its Application for the Detection of Protease. Materials Reports, 2018, 32(14): 2486-2490.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.14.029  或          http://www.mater-rep.com/CN/Y2018/V32/I14/2486
1 Duan R, Lou X, Xia F. The development of nanostructure assisted isothermal amplification in biosensors[J]. Chemical Society Reviews,2016,45(6):1738.
2 Zhao D, Du J, Chen Y, et al. A quencher-tether-ligand probe and its application in biosensor based on conjugated polymer[J]. Macromo-lecules,2008,41(14):5373.
3 He F, Tang Y, Yu M, et al. Fluorescence-amplifying detection of hydrogen peroxide with cationic conjugated polymers, and its application to glucose sensing[J]. Advanced Functional Materials,2006,16(1):91.
4 Chang Z, Jing L, Chen B, et al. Rational design of asymmetric red fluorescent probes for live cell imaging with high AIE effect and large two-photon absorption cross section by tuneable terminal group[J]. Chemical Science,2016,7(7):4527.
5 Ho H A, Leclerc M. Optical sensors based on hybrid aptamer/conjugated polymer complexes[J]. Journal of the American Chemical Society,2004,126(5):1384.
6 Li C, Numata M, Takeuchi M, et al. A sensitive colorimetric and fluorescent probe based on a polythiophene derivative for the detection of ATP[J]. Angewandte Chemie-International Edition,2005,44(39):6371.
7 Zhu C, Du D, Lin Y. Graphene and graphene-like 2D materials for optical biosensing and bioimaging: A review[J]. 2D Materials,2015,2(3):032004.
8 Chi S, Li L, Wu Y. A series of novel dibenzothiophene-based two-photon fluorescent probes for cellular nucleus imaging[J]. Sensors and Actuators B: Chemical,2016,231:811.
9 Miranda O R, You C C, Phillips R, et al. Array-based sensing of proteins using conjugated polymers[J]. Journal of the American Chemical Society,2007,129(32):9856.
10 Xu J, Fang Y, Song Z, et al. BSA-tetraphenylethene derivative conjugates with aggregation-induced emission properties: Fluorescent probes for label-free and homogeneous detection of protease and alpha 1-antitrypsin[J]. Analyst,2011,136(11):2315.
11 Thomas S W III, Joly G D, Swager T M. Chemical sensors based on amplifying fluorescent conjugated polymers[J]. Chemical Reviews,2007,107(4):1339.
12 Shen X, Zhang G, Zhang D. A new fluorometric turn-on detection of L-lactic acid based on the cascade enzymatic and chemical reactions and the abnormal fluorescent behavior of silole[J]. Organic Letters,2012,14(7):1744.
13 Xie Y, Tan Y, Liu R, et al. Continuous and sensitive acid phosphatase assay based on a conjugated polyelectrolyte[J]. ACS Applied Materials & Interfaces,2012,4:3784.
14 Li H, Liu F, Han J, et al. Interaction of Cy3 dye with CCG and its application for BSA detection[J]. Journal of Materials Chemistry B,2013,1:693.
15 Gu X, Zhang G, Wang Z, et al. A new fluorometric turn-on assay for alkaline phosphatase and inhibitor screening based on aggregation and deaggregation of tetraphenylethylene molecules[J]. Analyst,2013,138:2427.
16 Xu K, Liu F, Ma J, et al. A new specific fullerene-based fluorescent probe for trypsin[J]. Analyst,2011,136(6):1199.
17 Ionescu R E, Cosnier S, Marks R S. Protease amperometric sensor[J]. Analytical Chemistry,2006,78(18):6327.
18 Ryu D, Park E, Kim D S, et al. A rational approach to fluorescence “turn-on” sensing of α-amino-carboxylates[J]. Journal of the American Chemical Society,2008,130(8):2394.
19 Zhang M, Yu M, Li F, et al. A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging[J]. Journal of the American Chemical Society,2007,129(34):10322.
20 Folmer-Andersen J F, Lynch V M, Anslyn E V. “Naked-eye” detection of histidine by regulation of Cu (Ⅱ) coordination modes[J]. Chemistry—A European Journal,2005,11(18):5319.
21 Imai H, Munakata M, Uemori Y, et al. Chiral recognition of amino acids and dipeptides by a water-soluble zinc porphyrin[J]. Inorganic Chemistry,2004,43(4):1211.
22 Kruppa M, Mandl C, Miltschitzky S, et al. A luminescent receptor with affinity for N-terminal histidine in peptides in aqueous solution[J]. Journal of the American Chemical Society,2005,127(10):3362.
23 Wosnick J H, Mello C M, Swager T M. Synthesis and application of poly (phenylene ethynylene)s for bioconjugation: A conjugated polymer-based fluorogenic probe for proteases[J]. Journal of the American Chemical Society,2005,127(10):3400.
24 Kircher M F, Weissleder R, Josephson L. A dual fluorochrome probe for imaging proteases[J]. Bioconjugate Chemistry,2004,15(2):242.
25 An L, Liu L, Wang S. Label-free, homogeneous, and fluorescence “turn-on” detection of protease using conjugated polyelectrolytes[J]. Biomacromolecules,2009,10(2):454.
26 An L, Tang Y, Feng F, et al. Water-soluble conjugated polymers for continuous and sensitive fluorescence assays for phosphatase and peptidase[J]. Journal of Materials Chemistry,2007,17(39):4147.
27 Ingram A, Byers L, Faulds K, et al. SERRS-based enzymatic probes for the detection of protease activity[J]. Journal of the Ame-rican Chemical Society,2008,130(36):11846.
28 Li Q, Guo Y, Shao S. A bodipy derivative as a highly selective “off-on” fluorescent chemosensor for hydrogen sulfate anion[J]. Analyst,2012,137:4497.
29 Rostami A, Mark S T. Polymers for anion recognition and sensing[J]. Macromolecular Rapid Communications,2012,33:21.
30 Kaur P, Kaur H, Singh K. A ‘turn-off’ emission based chemosensor for HSO4--formation of a hydrogen-bonded complex[J]. Analyst,2013,138:425.
31 Lee D H, Kim S Y, Hong J I. A fluorescent pyrophosphate sensor with high selectivity over ATP in water[J]. Angewandte Chemie-International Edition,2004,43(36):4777.
32 Martínez-máñez R, Sancenón F. Fluorogenic and chromogenic che-mosensors and reagents for anions[J]. Chemical Reviews,2003,103(11):4419.
33 Wang B, Li P, Yu F. A reversible fluorescence probe based on Se-BODIPY for the redox cycle between HClO oxidative stress and H2S repair in living cells[J]. Chemical Communication,2013,49:1014.
34 Lou X, Ou D, Li Q, et al. An indirect approach for anion detection: The displacement strategy and its application[J]. Chemical Communication,2012,48(68):8462.
35 Zeng Q, Zhang L, Li Z, et al. New polyacetylene-based chemosensory materials for the “turn-on” sensing of α-amino acids[J]. Polymer,2009,50(2):434.
36 Li Z, Lou X, Li Z, et al. A new approach to fluorescence “turn-on” sensing of α-amino acids[J]. ACS Applied Materials & Interfaces,2009,1(2):232.
37 Lou X, Zhang L, Qin J, et al. Colorimetric sensing of α-amino acids and its application for the “label-free” detection of protease[J]. Langmuir,2010,26(3):1566.
38 Jung H S, Kwon P S, Lee J W, et al. Coumarin-derived Cu2+-selective fluorescence sensor: Synthesis, mechanisms, and applications in living cells[J]. Journal of the American Chemical Society,2009,131(5):2008.
39 Williams A T R, Winfield S A, Miller J N. Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer[J]. Analyst,1983,108(1290):1067.
40 Liu L, Dong X, Xiao Y, et al. Two-photon excited fluorescent chemosensor for homogeneous determination of copper(Ⅱ) in aqueous media and complicated biological matrix[J]. Analyst,2011,136(10):2145.
[1] 魏金枝,王雪亮,孙晓君,张凤鸣. 绿色电化学法合成金属有机骨架材料的研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1435-1441.
[2] 韩冬冬,陈维灯,钟世云. 水溶性单体对聚合物乳液在水泥浆体中稳定性的影响[J]. 《材料导报》期刊社, 2017, 31(24): 74-78.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed