Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 30-35    https://doi.org/10.11896/j.issn.1005-023X.2017.015.005
  材料综述 |
磁性水凝胶作为药物载体的应用研究进展*
韩晓东, 张稳, 于坤, 贾庆明, 陕绍云, 苏红莹
昆明理工大学化学工程学院,昆明 650500;
Advances in Application of Magnetic Hydrogels as Drug Carriers
HAN Xiaodong, ZHANG Wen, YU Kun, JIA Qingming, SHAN Shaoyun, SU Hongying
Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500;
下载:  全 文 ( PDF ) ( 1694KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磁性水凝胶是一类同时具有磁性材料、高分子材料及水凝胶的性质特点的无机/有机复合材料。因具有优良的磁学性能及生物相容性,其作为新一代的药物载体可以实现磁响应、磁靶向及磁热疗等功能,在药物控制释放领域具有广阔的应用前景。对磁性水凝胶的制备方法及其在药物载体领域的研究情况进行了综述,详细介绍了磁性水凝胶作为药物载体的两种药物释放机理(ON/OFF模型及热敏释放原理),及其在磁靶向药物控释、磁热疗和磁共振成像方面的应用研究现状。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩晓东
张稳
于坤
贾庆明
陕绍云
苏红莹
关键词:  磁性纳米颗粒  水凝胶  药物载体  磁靶向  磁热疗    
Abstract: Magnetic hydrogel combines the properties and advantages of magnetic material, polymer material and hydrogel into a single platform, which is widely used as biomaterials. Because of their excellent magnetic properties and biocompatibility, magnetic hydrogel can be used as multifunctional drug delivery systems (DDS) for magnetic sensitive drug release, targeting, hyperthermia and magnetic resonance imaging (MRI). In this paper, recent progresses of the preparation and applications of magnetic hydrogel as drug delivery systems are reviewed. And the drug release mechanism of magnetic hydrogel, including the ON/OFF release model and temperature-sensitive release behavior are described in detail.
Key words:  magnetic nanoparticles    hydrogel    drug carrier    magnetic targeting    magnetic hyperthermia
               出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  O631  
基金资助: *国家自然科学基金(51503090);昆明理工大学自然科学基金(14118713)
作者简介:  韩晓东:男,1992年生,硕士研究生,研究方向为磁性水凝胶材料 E-mail:461085683@qq.com 苏红莹:通讯作者,女,1986年生,博士,硕士研究生导师,研究方向为纳米生物材料 E-mail:hongyingsu@kmust.edu.cn
引用本文:    
韩晓东, 张稳, 于坤, 贾庆明, 陕绍云, 苏红莹. 磁性水凝胶作为药物载体的应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 30-35.
HAN Xiaodong, ZHANG Wen, YU Kun, JIA Qingming, SHAN Shaoyun, SU Hongying. Advances in Application of Magnetic Hydrogels as Drug Carriers. Materials Reports, 2017, 31(15): 30-35.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.005  或          http://www.mater-rep.com/CN/Y2017/V31/I15/30
1 Tietze R, Lyer S, Dürr S, et al. Nanoparticles for cancer therapy using magnetic forces[J]. Nanomedicine, 2017,7(3):447.
2 Parker B S, Rautela J, Hertzog P J. Antitumour actions of interfe-rons: Implications for cancer therapy[J]. Nat Rev Cancer,2016,16(3):131.
3 Carr C, Ng J, Wigmore T, et al. The side effects of chemotherapeutic agents[J]. Current Anaesthesia Critical Care,2008,19(2):70.
4 Miller K D, Siegel R L, Lin C C, et al. Cancer treatment and survivorship statistics, 2016[J]. Ca A Cancer J Clinicians,2016,66(4):271.
5 Li X L, Oduola W O, Qian L, et al. Integrating multiscale modeling with drug effects for cancer treatment[J]. Cancer Informatics,2016,14(S5):21.
6 Jaiswal M K, Pradhan L, Vasavada S, et al. Magneto-thermally responsive hydrogels for bladder cancer treatment: Therapeutic efficacy and in vivo biodistribution[J]. Colloids Surf B Biointerfaces,2015,136:625.
7 Ju Y C, Thapa R K, Yong C S, et al. Nanoparticle-based combination drug delivery systems for synergistic cancer treatment[J]. J Pharmaceutical Investigation,2016,46(4):325.
8 Zhang T, Cai S, et al. Hyaluronan-lysine cisplatin drug carrier for treatment of localized cancers: Pharmacokinetics, tolerability, and efficacy in rodents and canines[J]. J Pharmaceutical Sci,2016, 105(6):1891.
9 Emanuel N, Neuman M, Barak S. Sustained-release drug carrier composition: US, US8877242[P].2014.
10 Brandl F, Kastner F, Gschwind R M, et al. Hydrogel-based drug delivery systems: Comparison of drug diffusivity and release kinetics[J]. J Controlled Release,2010,142(2):221.
11 Ai H. Layer-by-layer capsules for magnetic resonance imaging and drug delivery[J]. Adv Drug Delivery Rev,2011,63(9):772.
12 Kwon G S, Okano T. Polymeric micelles as new drug carriers[J]. Adv Drug Delivery Rev,1996,21(2):107.
13 Su H, Liu Y, Wang D, et al. Amphiphilic starlike dextran wrapped superparamagnetic iron oxide nanoparticle clsuters as effective magnetic resonance imaging probes[J]. Biomaterials,2012,34(4):1193.
14 Wang Q Y, Su H Y, Xia C C, et al. Amphiphilic dextran/magnetite nanocomposites as magnetic resonance imaging probes[J]. Sci Bull,2009,54(17):2925.
15 Li Y, Huang G, Zhang X, et al. Magnetic Hydrogels and their potential biomedical applications[J]. Adv Funct Mater,2013,23(6):660.
16 Ahmad H, Sultana M S, Alam M A, et al. Evaluating a simple blending approach to prepare magnetic and stimuli-responsive composite hydrogel particles for application in biomedical field[J]. Express Polym Lett,2016,10(8):664.
17 Tóth I Y, Veress G, Szekeres M, et al. Magnetic hyaluronate hydrogels: Preparation and characterization[J]. J Magn Magn Mater,2014,380:175.
18 Wang Y H, Xia M G, Wu Y T, et al. Preparation and characterization of PNIPAM nanocomposite hydrogels with controllable magne-tic properties[J].J Funct Polym,2015,28(1):32(in Chinese).
王益亨, 夏梦阁, 武永涛,等. 磁性能可控的聚(N-异丙基丙烯酰胺)基纳米复合水凝胶的制备与表征[J]. 功能高分子学报,2015,28(1):32.
19 Zhao W, Odelius K, Edlund U, et al. In situ synthesis of magnetic field-responsive hemicellulosehydrogels for drug delivery[J]. Biomacromolecules,2015,16(8):2522.
20 Jiang L, Liu P. Design of magnetic attapulgite/fly ash/poly(acrylic acid) ternary nanocomposite hydrogels and performance evaluation as selective adsorbent for Pb2+ ion[J]. ACS Sustainable Chem Eng,2014, 2(7):1785.
21 Messing R, Frickel N, Belkoura L, et al. Cobalt ferrite nanoparticles as multifunctional cross-linkers in PAAm ferrohydrogels[J]. Macromolecules,2011,44:2990.
22 Guo X, Wang L, Wei X, et al. Polymer-based drug delivery systems for cancer treatment[J]. J Polym Sci A Polym Chem,2016,54(22):3525.
23 Galot R, Machiels J P. Safety of drug treatments for head and neck cancer[J]. Expert Opinion Drug Safety, 2016,15(11):1527.
24 Rao S Q, Xue Z S, Lu G H. Preparation and application of magnetic sensitive hydrogel[J].New Chem Mater,2013,41(11):187(in Chinese).
饶思奇, 徐祖顺, 路国红. 磁性水凝胶的制备及其应用研究进展[J]. 化工新型材料,2013,41(11):187.
25 Uva M, Pasqui D, Mencuccini L, et al. Influence of alternating and static magnetic fields on drug release from hybrid hydrogels containing magnetic nanoparticles[J]. J Biomater Nanobiotechnol,2014,5(4):924.
26 Satarkar N S, Hilt J Z. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release[J]. J Controlled Release,2008,130(3):246.
27 Campbell S, Maitland D, Hoare T. Enhanced pulsatile drug release from injectable magnetic hydrogels with embedded thermosensitive microgels[J]. ACS Macro Lett,2015,4(3):312.
28 Zhang N, Lock J, Sallee A, et al. Magnetic nanocomposite hydrogel for potential cartilage tissue engineering: Synthesis, characterization, and cytocompatibility with bone marrow derived mesenchymal stem Cells[J]. ACS Appl Mater Interfaces,2015,7(37):20987.
29 Zhang D, Sun P, Li P, et al. A magnetic chitosan hydrogel for sustained and prolonged delivery of Bacillus Calmette-Guerin in the treatment of bladder cancer[J]. Biomaterials,2013,34(38):10258.
30 Gobbo O L, Sjaastad K, Radomski M W, et al. Magnetic nanoparticles in cancer theranostics[J]. Theranostics,2015,5(511):1249.
31 Huang J, Xue Y, Cai N, et al. Efficient reduction and pH co-triggered DOX-loaded magnetic nanogel carrier using disulfide crosslin-king[J]. Mater Sci Eng C: Mater Biol Appl,2015,46:41.
32 Sung B, Shaffer S, Sittek M, et al. Alternating magnetic field-responsive hybrid gelatin microgels for controlled drug release[J]. J Visualized Experiments,2016,108:53680.
33 Reddy N N, Ravindra S, Reddy N M, et al. Temperature responsive hydrogel magnetic nanocomposites for hyperthermia and metal extraction applications[J]. J Magn Magn Mater,2015,394:237.
34 Zhu X, Zhang H, Huang H, et al. Functionalized graphene oxide-based thermosensitive hydrogel for magnetic hyperthermia therapy on tumors[J]. Nanotechnology,2015,26(36):365103.
35 Kim J I, Chun C, Kim B, et al. Thermosensitive/magnetic poly(organophosphazene) hydrogel as a long-term magnetic resonance contrast platform[J]. Biomaterials,2012,33(1):218.
36 Wang X, Niu D, Li P, et al. Dual-enzyme-loaded multifunctional hybrid nanogel system for pathological responsive ultrasound imaging and T2-weighted magnetic resonance imaging[J]. ACS Nano,2015, 9(6):5646.
[1] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[2] 兰军, 刘乔, 陈重一. 一步法制备高强度自修复聚丙烯酸/聚烯丙基胺聚电解质水凝胶及其性能研究[J]. 材料导报, 2019, 33(8): 1412-1415.
[3] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[4] 于坤, 韩晓东, 何丽华, 贾庆明, 陕绍云, 苏红莹. 用于药物载体系统的多糖材料的修饰方法[J]. 材料导报, 2019, 33(3): 510-516.
[5] 薛雅楠, 韩政学, 李爽然, 张佳宇, 张雪慧, 王兆伟, 贾瑞洁, 王艳芹, 武晓刚, 李晓娜, 陈维毅. 纳米材料掺杂型聚乙烯醇双交联复合水凝胶的力-化学性质[J]. 材料导报, 2019, 33(10): 1745-1751.
[6] 谢丽娜, 罗聪, 吴嘉敏, 王昌绚, 邬均. 利用均匀磁场提高聚乙烯亚胺-Fe3O4纳米颗粒复合物的磁转染效果[J]. 《材料导报》期刊社, 2018, 32(8): 1247-1251.
[7] 吴称意, 李聪, 张旭, 程超, 吴少尉, 周倩, 覃姗姗. 超声辅助合成多孔pH敏感性海藻酸钠水凝胶及其控释行为[J]. 《材料导报》期刊社, 2018, 32(7): 1187-1191.
[8] 李光大, 张楠, 张开丽, 赵三团, 麻开旺, 许贺龙, 赵威, 谢蟪旭. 含钙铁氧体磁性生物活性玻璃陶瓷热种子的制备与表征[J]. 材料导报, 2018, 32(24): 4211-4216.
[9] 姚一军,王鸿儒. 纤维素化学改性的研究进展[J]. 材料导报, 2018, 32(19): 3478-3488.
[10] 王志芳,宣承楷,刘雪敏,施雪涛. 环糊精衍生物水凝胶材料的研究进展[J]. 材料导报, 2018, 32(19): 3456-3464.
[11] 王德玄, 王磊, 于良民. 三维结构聚丙烯酰胺/聚乙烯醇水凝胶的合成及其在超级电容器中的应用[J]. 材料导报, 2018, 32(17): 2907-2911.
[12] 胡耀强, 陈法锦, 刘海宁, 张慧芳, 吴志坚, 叶秀深. 聚N-异丙基丙烯酰胺水凝胶的制备及热致聚集行为[J]. 《材料导报》期刊社, 2018, 32(14): 2491-2496.
[13] 王静,刘红科,刘平生,李利. 高强度水凝胶纳米复合材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 67-75.
[14] 黄婧欣, 曾楚楚, 郭明. 新型温敏网络半互穿多孔水凝胶的制备及其固定化酶的研究*[J]. 《材料导报》期刊社, 2017, 31(21): 158-163.
[15] 孙舒鑫, 焦体峰, 张乐欣. 载银纳米颗粒多响应性复合水凝胶研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 62-68.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed