Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 24-29    https://doi.org/10.11896/j.issn.1005-023X.2017.015.004
  材料综述 |
离子聚合物-金属复合材料(IPMC)的电极界面研究进展*
王延杰1, 汝杰2, 赵东旭2, 王田苗3, 沈奇3,4, 陈花玲2, 朱灯林1
1 河海大学机电工程学院,常州 213022;
2 西安交通大学机械工程学院,西安 710049;
3 北京航空航天大学机器人研究所,北京 100191;
4 内华达大学拉斯维加斯分校机械工程系,拉斯维加斯 89154-4027;
The State of Art of Electrode Interface of Ionic Polymer-Metal Composites (IPMC)
WANG Yanjie1, RU Jie2, ZHAO Dongxu2, WANG Tianmiao3, SHEN Qi3,4, CHEN Hualing2, ZHU Denglin1
1 School of Mechatronic Engineering, Hohai University, Changzhou 213022;
2 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049;
3 Institute of Robotics, Beijing University of Aeronautics and Astronautics, Beijing 100191;
4 Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas 89154-4027;
下载:  全 文 ( PDF ) ( 1766KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 离子聚合物-金属复合材料(Ionic polymer-metal composites, IPMC)是一种新型的智能材料,由于其具有良好的机电转换能力且本体柔软,可以制作成多种驱动器和传感器,因而在各个领域中展示出巨大的应用潜力。这种材料的机电性能受多种因素影响,其电极界面是重要影响因素之一。文章回顾了近几年来国内外针对IPMC材料的界面电极特性所做的研究工作,归纳了优化电极界面的主要措施,并提出一种有效提高IPMC材料电极界面的制备工艺设计思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王延杰
汝杰
赵东旭
王田苗
沈奇
陈花玲
朱灯林
关键词:  离子聚合物-金属复合材料  电极界面  制备工艺  化学镀  智能材料    
Abstract: As a type of emerging smart materials, ionic polymer-metal composites (IPMC) consisting of polymer matrix and metal electrodes have a good electromechanical conversion capability. It can be made into a variety of actuators and sensors easily, which show great potentials in various fields. Mechanical and electrical properties of IPMC are affected by many factors, among which the electrode interface is one of the important factors. This paper reviews domestic and foreign research works on the electrode interface characteristics of IPMC in recent years, summarizes the main methods to optimize the electrode interface and proposes an effective design ideas to improve the preparation process of electrode interface of IPMC.
Key words:  ionic polymer-metal composites    electrode interface    preparation process    chemical plating    smart material
出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  TB381  
基金资助: *国家自然科学基金(51505369);中央高校基本科研业务费(2016B02814);常州市特种机器人及智能技术重点实验室开放基金(M20133004)
作者简介:  王延杰:男,1985年生,博士,讲师,研究方向为智能材料工艺及软机械功能设计等 E-mail:yjwang@hhu.edu.cn
引用本文:    
王延杰, 汝杰, 赵东旭, 王田苗, 沈奇, 陈花玲, 朱灯林. 离子聚合物-金属复合材料(IPMC)的电极界面研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 24-29.
WANG Yanjie, RU Jie, ZHAO Dongxu, WANG Tianmiao, SHEN Qi, CHEN Hualing, ZHU Denglin. The State of Art of Electrode Interface of Ionic Polymer-Metal Composites (IPMC). Materials Reports, 2017, 31(15): 24-29.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.004  或          https://www.mater-rep.com/CN/Y2017/V31/I15/24
1 Zhang Q M, Li H, Poh M, et al. An all-organic composite actuator material with a high dielectric constant[J]. Nature,2002,419(6904):284.
2 Stuart M A C, Huck W T S, Genzer J, et al. Emerging applications of stimuli-responsive polymer materials[J]. Nat Mater,2010,9(2):101.
3 Shen Q, Trabia S, Stalbaum T, et al. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation[J]. Sci Rep,2016,6:24462
4 Baughman R H. Muscles made from metal[J]. Science,2003,300(5617):268.
5 Keplinger C, Sun J Y, Foo C C, et al. Stretchable, transparent, ionic conductors[J]. Science,2013,341(6149):984.
6 Ma M, Guo L, Anderson D G, et al. Bio-inspired polymer composite actuator and generator driven by water gradients[J]. Science,2013,339(6116):186.
7 Samatham R, Kim K J, Dogruer D, et al. Active polymers: An overview[M]//Electroactive Polymers for Robotic Applications. London:Springer,2007:1.
8 Bhandari B, Lee G Y, Ahn S H. A review on IPMC material as actuators and sensors: Fabrications, characteristics and applications[J]. Int J Precis Eng Manuf, 2012,13(1):141.
9 Shen Q, Wang T, Liang J, et al. Hydrodynamic performance of a biomimetic robotic swimmer actuated by ionic polymer-metal composite[J]. Smart Mater Struct,2013,22(7):075035.
10 Jo C, Pugal D, Oh I K, et al. Recent advances in ionic polymer-me-tal composite actuators and their modeling and applications[J]. Prog Polym Sci,2013,38(7):1037.
11 Bar-Cohen Y, Leary S P, Yavrouian A, et al. Challenges to the application of IPMC as actuators of planetary mechanisms[C]//SPIE′s 7th Annual International Symposium on Smart Structures and Materials. International Society for Optics and Photonics,2000:140.
12 Carpi F, De Rossi D. Electroactive polymer-based devices for e-textiles in biomedicine[J]. IEEE Trans Inform Technol Biomed,2005, 9(3):295.
13 Tiwari R, Garcia E. The state of understanding of ionic polymer metal composite architecture: A review[J]. Smart Mater Struct,2011,20(8):083001.
14 Yu M, He Q S, Ding Y, et al. Force optimization of ionic polymer metal composite actuators by an orthogonal array method[J]. Chin Sci Bull,2011,56(19):2061.
15 Shoji E, Hirayama D. Effects of humidity on the performance of io-nic polymer-metal composite actuators: Experimental study of the back-relaxation of actuators[J]. J Phys Chem B,2007,111(41):11915.
16 Palmre V, Pugal D, Kim K J, et al. Nanothorn electrodes for ionic polymer-metal composite artificial muscles[J]. Sci Rep,2014,4:6176.
17 Liu S, Montazami R, Liu Y, et al. Influence of the conductor network composites on the electromechanical performance of ionic polymer conductor network composite actuators[J]. Sens Actuators A: Phys,2010,157(2):267.
18 Nemat-Nasser S, Wu Y. Comparative experimental study of ionic polymer-metal composites with different backbone ionomers and in various cation forms[J]. J Appl Phys,2003,93(9):5255.
19 Bennett M D, Leo D J. Ionic liquids as stable solvents for ionic polymer transducers[J]. Sens Actuators A: Phys,2004,115(1):79.
20 Wu G, Hu Y, Liu Y, et al. Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator[J]. Nat Commun,2015,6(3):7.
21 Kong L, Chen W. Carbon nanotube and graphene-based bioinspired electrochemical actuators[J]. Adv Mater,2014,26(7):1025.
22 Wang Y, Chen H, et al. Aided manufacturing techniques and applications in optics and manipulation for ionic polymer-metal composites as soft sensors and actuators[J]. J Polym Eng,2015,35(7):611.
23 Salehpoor K, Shahinpoor M, Razani A. Role of ion transport in actuation of ionic polymeric-platinum composite (IPMC) artificial muscles[C]//5th Annual International Symposium on Smart Structures and Materials. San Diego,1998:50.
24 Asaka K, Oguro K, Nishimura Y, et al. Bending of polyelectrolyte membrane-platinum composites by electric stimuli I. Response cha-racteristics to various waveforms[J]. Polym J,1995,27(4):436.
25 He Q, Yu M, Zhang X, et al. Electromechanical performance of an ionic polymer-metal composite actuator with hierarchical surface texture[J]. Smart Mater Struct,2013,22(5):055001.
26 Kim S J, Lee I T, Kim Y H. Performance enhancement of IPMC actuator by plasma surface treatment[J]. Smart Mater Struct,2007,16(1):N6.
27 Noh T G, Tak Y, Nam J D, et al. Electrochemical characterization of polymer actuator with large interfacial area[J]. Electrochim Acta,2002,47(13):2341.
28 Jin N, Wang B F, Bian K, et al. Effect of surface roughening on the manufacture and performance of IPMC [J]. J Funct Mater,2008,39(11):1933.
金宁, 王帮峰, 卞侃,等. 表面粗化工艺对 IPMC 的制备及性能的影响[J]. 功能材料,2008,39(11):1933.
29 Kim K J, Shahinpoor M. Ionic polymer-metal composites: Ⅱ. Ma-nufacturing techniques[J]. Smart Mater Struct,2003,12(1):65.
30 Fujiwara N, Asaka K, Nishimura Y, et al. Preparation of gold-solid polymer electrolyte composites as electric stimuli-responsive mate-rials[J]. Chem Mater, 2000,12(6):1750.
31 Chang L, Chen H, Zhu Z, et al. Manufacturing process and electrode properties of palladium-electroded ionic polymer-metal compo-site[J]. Smart Mater Struct, 2012,21(6):065018.
32 Zhou W, Li W J. Micro ICPF actuators for aqueous sensing and manipulation[J]. Sens Actuators A: Phys,2004,114(2):406.
33 Kim K J, Shahinpoor M. A novel method of manufacturing three-dimensional ionic polymer-metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles[J]. Polymer,2002,43(3):797.
34 Akle B J, Bennett M D, Leo D J, et al. Direct assembly process: A novel fabrication technique for large strain ionic polymer transducers[J]. J Mater Sci,2007, 42(16):7031.
35 Kim S J, Kim S M, Kim K J, et al. An electrode model for ionic polymer-metal composites[J]. Smart Mater Struct,2007,16(6):2286.
36 Wallmersperger T, Akle B J, Leo D J, et al. Electrochemical response in ionic polymer transducers: An experimental and theoretical study[J]. Compos Sci Technol,2008,68(5):1173.
37 Porfiri M. Influence of electrode surface roughness and steric effects on the nonlinear electromechanical behavior of ionic polymer metal composites[J]. Phys Rev E,2009,79(4):041503.
38 Palmre V, Pugal D, Leang K K, et al. The effects of electrode surface morphology on the actuation performance of IPMC[J]. Proc SPIE,2013,8687(36):86870W.
39 Chang L, Asaka K, Zhu Z, et al. Effects of surface roughening on the mass transport and mechanical properties of ionic polymer-metal composite[J]. J Appl Phys,2014,115(24):244901.
40 Tiwari R, Kim K J. Effect of metal diffusion on mechanoelectric property of ionic polymer-metal composite[J]. Appl Phys Lett,2010,97(24):244104.
[1] 王鹤龙, 史贵丙, 王丽, 李宗臻. 高饱和磁通密度铁基非晶纳米晶磁粉芯的研究进展[J]. 材料导报, 2025, 39(3): 24010092-9.
[2] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[3] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[4] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[5] 黄玺, 张亮, 王曦, 陈晨, 卢晓. 电子封装用纳米级无铅钎料的研究进展[J]. 材料导报, 2024, 38(23): 23080181-13.
[6] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
[7] 陶德昌, 文鑫, 李雪丽, 严坤, 赵青华, 夏明, 杨晨光, 王栋. 超级柔韧性和优异电磁屏蔽性能的PVA-co-PE纳米纤维覆铜膜[J]. 材料导报, 2024, 38(14): 23030255-8.
[8] 张伟, 杨旭, 陈晓通, 任军强, 卢学峰. 纳米结构金属材料制备工艺及强化稳定方式研究进展[J]. 材料导报, 2023, 37(S1): 23010123-16.
[9] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[10] 李良, 赵修贤, 王彬彬, 杨帅军, 聂永, 蒋绪川. 热致变色过渡金属配合物的变色机理及应用[J]. 材料导报, 2023, 37(4): 21010049-11.
[11] 符明君, 张勇, 张耿飞, 王凯, 贾致远, 王娜. 钼及钼合金改性硅化物高温抗氧化涂层研究现状[J]. 材料导报, 2023, 37(3): 21030219-8.
[12] 张永芳, 黎亮, 董丽虹, 王海斗, 王朋, 谢向宇. RFID传感标签制备工艺研究进展[J]. 材料导报, 2023, 37(22): 22030149-10.
[13] 刘军, 李振林, 张伟卓, 靳贺松, 邢锋. 工业固体废弃物材料制作冷粘结人造轻骨料的研究进展[J]. 材料导报, 2023, 37(18): 21090269-18.
[14] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[15] 赵明媚, 张进秋, 彭志召, 张建, 李欣. 剪切增稠液体理论基础和工程应用进展概述[J]. 材料导报, 2022, 36(9): 20070135-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed