Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 21120186-11    https://doi.org/10.11896/cldb.21120186
  高分子与聚合物基复合材料 |
仿贻贝水凝胶的研究进展
李晓玉1,2, 连海兰1,2,*
1 南京林业大学材料科学与工程学院,南京 210037
2 南京林业大学林业资源高效加工利用协同创新中心,南京 210037
Research Advance of Mussel-inspired Hydrogels
LI Xiaoyu1,2, LIAN Hailan1,2,*
1 College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
2 Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, China
下载:  全 文 ( PDF ) ( 30729KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水凝胶因良好的三维网络结构、较好的亲水性以及一定的刚性被广泛应用于农业、化学工业、组织工程、生物医学、软电子等众多领域。然而,在潮湿环境中,水凝胶的低粘附性限制了其应用范围。自然界中,一些海洋生物,如贻贝能通过足丝的粘附蛋白表现出极好的粘附力,与海底岩石牢固结合。这为解决水凝胶的湿粘附问题提供了思路。基于此,本文介绍了贻贝的粘附结构和相关粘附蛋白的粘附机制,综述了仿贻贝水凝胶网络构建的研究进展及其应用现状,针对仿贻贝水凝胶的研究进展提出新的见解。这有助于更好地实现仿贻贝水凝胶网络结构的设计与构筑,扩大其应用领域。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李晓玉
连海兰
关键词:  贻贝  水凝胶  多巴  粘附性    
Abstract: Hydrogels have been widely used in agriculture, chemical industry, tissue engineering, biomedicine, soft electronics and other fields, owing to the good three-dimensional network structure, excellent hydrophilicity and certain rigidity. However, the weak adhesion ability of hydrogels in humid environment limits their applications. In nature, some marine organisms such as mussels can bind themselves firmly onto seafloor rocks through the adhesive proteins in their byssus. This inspires a biomimetic strategy for improving the wet adhesion of hydrogels, and researchers have already successfully constructed some mussel-inspired hydrogel polymers. This review introduces the adhesion structure of mussels and the adhesion mechanism of related adhesive proteins, and then summarizes the latest worldwide research efforts in the construction of mussel-inspired hydrogels networks and the corresponding applications. The paper also includes the authors' understanding on the development potential and trends in that field, and is expected to facilitate subsequent explorative and applicative studies.
Key words:  mussel    hydrogel    dopa    adhesion
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  O636  
基金资助: 国家自然科学基金(32071703)
通讯作者:  *连海兰,南京林业大学材料科学与工程学院教授、博士研究生导师。主要从事环保型木材胶黏剂与涂料、新型阻燃剂及生物质纳米复合材料的绿色制备及功能性应用等方面的教学与科研工作。发表论文100余篇,包括Carbohydrate Polymers,Journal of Hazardous Materials,Journal of Colloid and Interface Science,Journal of Materials Chemistry C等。 lianhailan@njfu.edu.cn   
作者简介:  李晓玉,2021年6月于天津科技大学获得硕士学位。现为南京林业大学材料科学与工程学院博士研究生,在连海兰教授的指导下进行研究。目前主要研究方向为生物质纳米复合材料和环保型木材胶黏剂。已发表SCI论文5篇,申请中国专利1项。
引用本文:    
李晓玉, 连海兰. 仿贻贝水凝胶的研究进展[J]. 材料导报, 2023, 37(19): 21120186-11.
LI Xiaoyu, LIAN Hailan. Research Advance of Mussel-inspired Hydrogels. Materials Reports, 2023, 37(19): 21120186-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120186  或          http://www.mater-rep.com/CN/Y2023/V37/I19/21120186
1 Yuk H, Lu B, Zhao X. Chemical Society Reviews, 2019, 48(6), 1642.
2 Zhao F, Bae J, Zhou X, et al. Advancd Materials, 2018, 30(48), e1801796.
3 Han L, Yan L, Wang K, et al. NPG Asia Materials, 2017, 9(4), e372.
4 Liang S, Zhang Y, Wang H, et al. Advancd Materials, 2018, 30 (23), 1704235.
5 Han L. Mussel-inspired hydrogel with multi-functions for biomedical applications. Ph. D. Thesis, Southwest Jiaotong University, China, 2013 (in Chinese).
韩璐. 仿贻贝多功能水凝胶及其生物医学应用的研究. 博士学位论文, 西南交通大学, 2013.
6 Waite J H. Journal of Experimental Biology, 2017, 220 (4), 517.
7 Zuccarello L V. Journal of Ultrastructure Research, 1980, 73 (2), 135.
8 Hassenkam T, Gutsmann T, Hansma P, et al. Biomacromolecules, 2004, 5 (4), 1351.
9 Waite J H. Results and Problems in Cell Differentiation, 1992, 19, 27.
10 Petrone L, Kumar A, Sutanto C N, et al. Nature Communications, 2015, 6, 8737.
11 Wei W, Petrone L, Tan Y, et al. Advance Functional Materials, 2016, 26 (20), 3496.
12 Hwang D S, Waite J H. Protein Science, 2012, 21 (11), 1689.
13 Zhao Q, Lee D W, Ahn B K, et al. Nature Materials, 2016, 15 (4), 407.
14 Zhao H, Waite J H. Biochemistry, 2006, 45 (47), 14223.
15 Wei W, Tan Y, Martinez Rodriguez N R, et al. Acta Biomaterialia, 2014, 10 (4), 1663.
16 Zhao H, Waite J H. Journal of Biological Chemistry, 2006, 281 (36), 26150.
17 Yu J, Kan Y, Rapp M, et al. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110 (39), 15680.
18 Kan Y, Danner E, Israelachvili J, et al. PloS One, 2014, 9, e108869.
19 Yu J. Adhesive interactions of mussel foot proteins, Springer International Publishing, 2014, pp.55.
20 Narayanan A, Dhinojwala A, Joy A. Chemical Society Reviews, 2021, 50 (23), 13321.
21 Li Y, Cao Y. Nanoscale Advances, 2019, 1 (11), 4246.
22 Zhou D, Li S, Pei M, et al. ACS Applied Materials & Interfaces, 2020, 12 (16), 18225.
23 Zhang X, Liu H, Yue L, et al. Journal of Materials Science, 2020, 55 (18), 7981.
24 Wei W, Yu J, Broomell C, et al. Journal of the American Chemical Society, 2013, 135 (1), 377.
25 Shin J, Lee J S, Lee C, et al. Advanced Functional Materials, 2015, 25 (25), 3814.
26 Forooshani P K, Lee B P. Journal of Polymer Science Part A-Polymer Chemistry, 2017, 55 (1), 9.
27 Danner E W, Kan Y J, Hammer M U, et al. Biochemistry, 2012, 51 (33), 6511.
28 Zhang C, Wu B H, Zhou Y S, et al. Chemical Society Reviews, 2020, 49 (11), 3605.
29 Lee B P, Messersmith P B, Israelachvili J N, et al. Annual Review of Materials Research, 2011, 41, 99.
30 Yu J, Wei W, Danner E, et al. Advance Materials, 2011, 23 (20), 2362.
31 Yu J, Wei W, Menyo M S, et al. Biomacromolecules, 2013, 14 (4), 1072.
32 Anderson T H, Yu J, Estrada A, et al. Advanced Functional Materials, 2010, 20 (23), 4196.
33 Ahn B K, Lee D W, Israelachvili J N, et al. Nature Materials, 2014, 13 (9), 867.
34 Shi C Y, Zhang Q, Yu C Y, et al. Advance Materials, 2020, 32 (23), 2000345.
35 Li Y T, Liao M R, Zhou J. Physical Chemistry Chemical Physics, 2017, 19 (43), 29222.
36 Jankovic I A, Saponjic Z V, Comor M I, et al. Surface modification of colloidal TiO2 nanoparticles with bidentate benzene derivatives. Journal of Physical Chemistry C, 2009, 113 (29), 12645.
37 Holten-Andersen N, Jaishankar A. Journal of Materials Chemistry B, 2014, 2 (17), 2467.
38 Kan Y J, Wei Z Y, Tan Q Y, et al. Science China-Technological Sciences, 2020, 63 (9), 1675.
39 Priemel T, Palia G, Forste F, et al. Science, 2021, 374 (6564), 206.
40 Liu Q, Lu X, Li L, et al. Journal of Physical Chemistry C, 2016, 120 (38), 21670.
41 Yang B, Lim C, Hwang D S, et al. Chemistry of Materials, 2016, 28 (21), 7982.
42 Zeng H B, Hwang D S, Israelachvili J N, et al. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107 (29), 12850.
43 Bazargan A, Wang Z X, Barford J P, et al. Journal of Cleaner Production, 2020, 260, 120848.
44 Kaur S, Narayanan A, Dalvi S, et al. ACS Central Science, 2018, 4 (10), 1420.
45 Akdogan Y, Wei W, Huang K Y, et al. Angewandte Chemie-International Edition, 2014, 53 (42), 11253.
46 Chang G J, Yang L, Yang J X, et al. Advance Materials, 2018, 30 (7), 1704234.
47 Lu Q Y, Oh D X, Lee Y, et al. Angewandte Chemie-International Edition, 2013, 52 (14), 3944.
48 Lucas X, Bauza A, Frontera A, et al. Chemical Science, 2016, 7 (2), 1038.
49 Kim S, Yoo H Y, Huang J, et al. ACS Nano, 2017, 11 (7), 6764.
50 Yang B, Jin S, Park Y, et al. Small, 2018, 14 (52), 1803377.
51 Dougherty D A. Accounts of Chemical Research, 2013, 46 (4), 885.
52 Ryu J H, Messersmith P B, Lee H. ACS Applied Materials & Interfaces, 2018, 10 (9), 7523.
53 Yang J, Stuart M A C, Kamperman M. Chemical Society Reviews, 2014, 43 (24), 8271.
54 Yang H C, Liao K J, Huang H, et al. Journal of Materials Chemistry A, 2014, 2 (26), 10225.
55 Lee B P, Dalsin J L, Messersmith P B. Biomacromolecules, 2002, 3 (5), 1038.
56 Waite J H. Comparative Biochemistry and Physiology Part B:Comparative Biochemistry, 1990, 97 (1), 19.
57 Rzepecki L M, Nagafuchi T, Waite J H. Archives of Biochemistry and Biophysics, 1991, 285 (1), 17.
58 Baty A M, Leavitt P K, Siedlecki C A, et al. Langmuir, 1997, 13 (21), 5702.
59 Waite J H. International Journal of Adhesion and Adhesives, 1987, 7 (1), 9.
60 Zhang C, Ma M Q, Chen T, et al. ACS Applied Materials & Interfaces, 2017, 9 (39), 34356.
61 Yu Y, Zhao X, Ye L. Applied Surface Science, 2021, 562, 150162.
62 Di X, Kang Y, Li F, et al. Colloids and Surfaces B-Biointerfaces, 2019, 177, 149.
63 Ju K Y, Lee Y, Lee S, et al. Biomacromolecules, 2011, 12 (3), 625.
64 Hu C, Long L, Cao J, et al. Chemical Engineering Journal, 2021, 411, 128564.
65 Jing X, Mi H Y, Lin Y J, et al. ACS Applied Materials & Interfaces, 2018, 10 (24), 20897.
66 Han L, Liu K, Wang M, et al. Advance Functional Materials , 2018, 28, 1704195.
67 Han L, Yan L, Wang M, et al. Chemistry of Materials, 2018, 30(16), 5561.
68 Zhang Z Y, Sun Y, Zheng Y D, et al. Materials Science & Engineering C-Materials for Biological Applications, 2020, 106, 110249.
69 Hsu H H, Liu Y, Wang Y, et al. ACS Sustainable Chemistry & Engineering, 2020, 8 (18), 6935.
70 Liu B, Wang Y, Miao Y, et al. Biomaterials, 2018, 171, 83.
71 Huang Y, Zhu M, Pei Z, et al. ACS Applied Materials & Interfaces, 2016, 8 (3), 2435.
72 Zhao Q, Mu S, Long Y, et al. Macromolecular Materials and Engineering, 2019, 304 (4), 1800664.
73 Chen K, Lin Q, Wang L, et al. ACS Applied Materials & Interfaces, 2021, 13 (8), 9748.
74 Hu B, Shen Y, Adamcik J, et al. ACS Nano, 2018, 12 (4), 3385.
75 Huang Z, Delparastan P, Burch P, et al. Biomaterials Science, 2018, 6 (9), 2487.
76 Abebe M W, Appiah-Ntiamoah R, Kim H. International Journal of Biological Macromolecules, 2020, 163, 147.
[1] 包亚晴, 黄李金鸿, 李新冬, 黄彪林, 黄万抚. PDA夹层调控的荷正电纳滤膜的制备及在水处理中的应用[J]. 材料导报, 2023, 37(6): 21090216-8.
[2] 饶春兴, 廖静文, 张雪慧, 武晓刚, 王艳芹, 陈维毅. 荧光水凝胶传感器及其传感响应机制研究进展[J]. 材料导报, 2023, 37(5): 21010130-8.
[3] 何贤会, 杨培昕, 卢小鸾, 汤陆扬, 付阳洋, 彭黔荣, 杨敏. 用于阴道黏膜给药的纳米胶束复合温敏水凝胶的制备及性能评价[J]. 材料导报, 2023, 37(19): 22040117-7.
[4] 周鑫, 关水, 孙长凯. 基于壳聚糖/黄原胶互穿网络的导电水凝胶支架制备及性能研究[J]. 材料导报, 2023, 37(18): 22030238-8.
[5] 许梦媛, 刘让同, 李亮, 刘淑萍, 李淑静. 氯化铝交联双网络聚乙烯醇/角蛋白自愈合水凝胶[J]. 材料导报, 2023, 37(15): 22010257-6.
[6] 严亮, 王沛, 黄国辉, 李慧敏, 蒋坤. 基于动态非共价键作用的HP(AA-co-AM)自愈合凝胶的构建及传感性能研究[J]. 材料导报, 2023, 37(14): 22010002-6.
[7] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[8] 张瑜, 张泗达, 丁秀仿, 张瑞华, 陈东, 徐建富, 附青山. pH敏感型水凝胶在药物递送中的研究进展[J]. 材料导报, 2022, 36(Z1): 21120138-5.
[9] 黄金鑫, 吴承伟, 余小刚, 马建立, 张伟. 基于多巴胺的自愈水凝胶研究进展[J]. 材料导报, 2022, 36(8): 20070335-7.
[10] 王岚, 罗学东, 张琪, 周晓东, 李超. 温拌胶粉改性沥青-集料粘附性及其体系水稳定性分析[J]. 材料导报, 2022, 36(8): 21010186-4.
[11] 王通, 王广飞, 张淑敏, 曲承蕾, 李诚博, 高永林. 基于天然多糖的水凝胶伤口敷料的研究进展[J]. 材料导报, 2022, 36(6): 20060050-9.
[12] 胡丹娜, 巨晓洁, 谢锐, 汪伟, 刘壮, 褚良银. 生理pH下可控释放胰岛素的温度/葡萄糖双响应可注射复合水凝胶[J]. 材料导报, 2022, 36(3): 21040234-7.
[13] 杜咪咪, 薛朝华, 郭小静, 贾顺田. 光致发热材料的超疏水化改性及其对光热转换性能的影响[J]. 材料导报, 2022, 36(15): 21010272-5.
[14] 宗丹, 盛扬, 李新庆, 潘艳, 孙一新, 邓林红, Mark Bradley, 张嵘. 以聚醚聚酯丙烯酸酯为交联剂的pH响应性水凝胶纳米微球的制备及药物释放研究[J]. 材料导报, 2022, 36(14): 21020090-7.
[15] 贾梦伟, 张婕, 周顺风, 杨云鹏, 卢立新. 环境响应水凝胶的非对称结构设计与智能仿生[J]. 材料导报, 2022, 36(12): 20100208-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed