Please wait a minute...
材料导报  2022, Vol. 36 Issue (15): 21010272-5    https://doi.org/10.11896/cldb.21010272
  高分子与聚合物基复合材料 |
光致发热材料的超疏水化改性及其对光热转换性能的影响
杜咪咪1, 薛朝华1,*, 郭小静2, 贾顺田1
1 陕西科技大学轻工科学与工程学院,西安 710021
2 陕西科技大学材料科学与工程学院,西安 710021
Superhydrophobicity Modification of Photothermally Induced Materials and Its Effect on Photothermal Conversion Performance
DU Mimi1, XUE Chaohua1,*, GUO Xiaojing2, JIA Shuntian1
1 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
2 School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
下载:  全 文 ( PDF ) ( 5487KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以棉纺织品为基材,采用多巴胺(DA)在微米级的纤维表面自聚合形成聚多巴胺(PDA)纳米颗粒,使材料表面形成微/纳粗糙结构并获得光致发热性能,然后使用聚二甲基硅氧烷(PDMS)对纺织品进行处理,利用PDMS的低表面能性质结合材料表面的微/纳结构特性使纺织品获得超疏水性能。采用热红外相机对材料的光热发射性能进行测试分析;采用扫描电子显微镜对材料表面的微观形貌进行观察;采用接触角测量仪对材料表面的疏水性能进行评估考察。结果表明,该材料在1 kW/m2模拟太阳光下照射5 min,其表面温度可达66.2 ℃;制备的纺织品材料的表面水滴接触角高达161°,滚动角低至0.9°。该材料的超疏水性自清洁功能可使其表面免遭污染,从而极大地提高了材料的光热转换性能的持久稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜咪咪
薛朝华
郭小静
贾顺田
关键词:  光热转换  超疏水  自清洁  聚多巴胺(PDA)  聚二甲基硅氧烷(PDMS)    
Abstract: Photothermal coating of polydopamine/polydimethylsiloxane (PDA/PDMS) with superhydrophobicity was fabricated on cotton textile by self-polymerization of dopamine hydrochloride (DA) on the fiber surface. The formed polydopamine (PDA) nanoparticles can not only rough the surface of fibers but also endow the textile photothermal conversion performance, followed by post-treatment with polydimethylsiloxane (PDMS). The PDMS characteristic of the low surface energy was combined with the micro/nano structure of the material surface, in order to offer the superhydrophobic property to the textiles.Thermal infrared camera was used to test the photothermal properties of the material, scanning electron microscope (SEM) was used to observe the microstructure of the material surface, and the hydrophobic properties of the material surface were evaluated through contact angle measuring instrument. The results show that surface temperature of the textile can reach 66.2 ℃ after 1 kW/m2 simulated sunlight for 5 min, and that the water contact angle of the material is up to 161° with the rolling angle as low as 0.9°. It showed excellent superhydrophobic self-cleaning performance, which protects the photothermal coating from being polluted by dirt so as to guarantee the durability of the photothermal conversion efficiency.
Key words:  photothermal conversion    superhydrophobic    self-cleaning    polydopamine (PDA)    polydimethylsiloxane (PDMS)
出版日期:  2022-08-10      发布日期:  2022-08-15
ZTFLH:  TS116  
基金资助: 国家自然科学基金(51572161);国家科技部重大项目(2017YFB0307700)
通讯作者:  *xuechaohua@126.com   
作者简介:  杜咪咪,2017年本科毕业于咸阳师范学院。现为陕西科技大学轻工科学与工程学院硕士研究生,主要从事光热转换以及超疏水复合材料的研究。
薛朝华,陕西科技大学博士研究生导师。2008年获浙江大学材料科学与工程工学博士学位,2009年赴美国加州大学戴维斯分校从事博士后研究。主要从事超疏水/防水涂层材料、光热转换及能源材料、功能复合材料等方面的研究。在国际学术期刊发表SCI收录论文50余篇。
引用本文:    
杜咪咪, 薛朝华, 郭小静, 贾顺田. 光致发热材料的超疏水化改性及其对光热转换性能的影响[J]. 材料导报, 2022, 36(15): 21010272-5.
DU Mimi, XUE Chaohua, GUO Xiaojing, JIA Shuntian. Superhydrophobicity Modification of Photothermally Induced Materials and Its Effect on Photothermal Conversion Performance. Materials Reports, 2022, 36(15): 21010272-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010272  或          http://www.mater-rep.com/CN/Y2022/V36/I15/21010272
1 Chen G Y, Sun J M, Peng Q, et al. Advanced Materials, 2020, 32(29), 908537.
2 Zhong H, Zhu Z R, Lin J, et al. ACS Nano, 2020, 14(5), 213.
3 Kosak S Ç, Trosien S, Biesalski M, et al. ACS Applied Materials & Interfaces, 2018, 10(43), 7478.
4 Li J L, Du M H, Lu G G, et al. Advanced Materials, 2018, 30(49), 1805159.
5 Fan X Q, Yang Y, Shi X L, et al. Advanced Functional Materials, 2020, 30, 2007110.
6 Tao J J, Ma H P, Yuan K P, et al. Nanoscale, 2020, 12(13), 7159.
7 Li Y C, Meng H F, Liu T, et al. Advanced Materials, 2019, 31(44), 1904585.
8 Wang Y, Zhen W, Zeng Y, et al. Journal of Materials Chemistry A, 2020, 8(12), 6034.
9 Chen J, Xu X J, Feng L, et al. Materials Letters, 2020, 276, 128213.
10 Wu L, Dong Z C, Cai Z R, et al. Nature Communication, 2020, 11(1), 446.
11 Cui L F, Zhang P P, Xiao Y K, et al. Advanced Materials, 2018, 30(22), 1706805.
12 Li X B, Guan C F, Gao X D, et al. ACS Applied Materials & Interfaces, 2020, 12(31), 35493.
13 Li C W, Jiang D J, Huo B B, et al. Nano Energy, 2019, 60, 841.
14 Zhang J J, Wang W, You S J, et al. Advanced Functional Materials, 2020, 30(7), 1909432.
15 Wang H, Zhang R J, Yuan D, et al. Advanced Functional Materials, 2020, 30(46), 2003995.
16 Jiang G, Chen L, Zhang S D, et al. ACS Applied Materials & Interfaces, 2018, 10(42), 36505.
17 Liu G H, Chen T, Xu J L, et al. Journal of Materials Chemistry A, 2020, 8(2), 513.
18 Barthlott W, Neinhuis C. Planta, 1997, 202(1), 1.
19 Choi B, Lee J, Han H, et al. ACS Applied Materials & Interfaces, 2018, 10(42), 36094.
20 Zhai S J, Zhao H. Applied Physics Letters, 2019, 114(23), 233702.
21 Xue C H, Wu Y, Guo X J, et al. Cellulose, 2020, 27(6), 3455.
22 Zhu B, Kou H, Liu Z X, et al. ACS Applied Materials & Interfaces, 2019, 11(38), 35005.
23 Li D W, Wang H Y, Liu Y, et al. Chemical Engineering Journal, 2019, 367, 169.
[1] 吕丹丹, 李慕荣, 张伟钢. 超疏水PDMS改性聚氨酯/黄铜复合涂层的制备及性能表征[J]. 材料导报, 2023, 37(4): 21060116-6.
[2] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[3] 杨福生, 王百祥, 张妍, 任永忠, 陈永哲, 杨武. 纳米银协同沙子构筑超疏水表面及其性能研究[J]. 材料导报, 2022, 36(6): 21010001-5.
[4] 王池嘉, 刘书佩, 王子华, 罗红欣. 防污涂层研究及应用新进展[J]. 材料导报, 2022, 36(23): 21020004-8.
[5] 刘小钰, 汪路, 张智勇, 刘传磊, 方雅涵, 王冉, 张友丽, 王灿, 苏丽芬, 杨斌, 周建华, 苗蕾. 界面太阳能蒸发的应用研究进展[J]. 材料导报, 2022, 36(19): 20110251-16.
[6] 盛奥, 姜昊基, 赵亚欣, 魏忠, 李昊, 贾昊, 王贺云. F-ZIF-90/PDMS混合基质膜的制备及强化乙醇传递过程的研究[J]. 材料导报, 2022, 36(17): 21030316-6.
[7] 刘晨, 丁德一, 李逸辰, 姚东东, 李天宇, 郑亚萍. 防冰材料研究进展[J]. 材料导报, 2022, 36(16): 20080061-7.
[8] 张栋凯, 吴凯, 刘刚, 孙军. PDMS基体上金属薄膜变形与断裂行为及其应变传感性能综述[J]. 材料导报, 2022, 36(13): 21010111-8.
[9] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[10] 唐宏, 董兵海, 艾虎. 透明超疏水涂层制备技术研究进展[J]. 材料导报, 2021, 35(Z1): 156-159.
[11] 余传明, 曾圣威, 刘叶原, 司徒紫晴, 刘可, 田丽芬, 罗文静, 梁远维, 李泳. 高内相乳液法制备P(St-DVB)多孔吸油材料及其在油水分离中的应用[J]. 材料导报, 2021, 35(4): 4200-4204.
[12] 潘洁, 赵美蓉, 孙玉楷, 路敦强, CLARENCE Augustine T. H Tee, 宋乐, 郑叶龙. 液体弹珠的微流体操作及工程应用[J]. 材料导报, 2021, 35(23): 23001-23019.
[13] 韦文厂, 刘峥, 魏润芝, 刁娜, 吕奕菊. 基于MOFs材料的超疏水复合涂层的制备及其对碳钢的防腐蚀研究[J]. 材料导报, 2021, 35(20): 20068-20075.
[14] 田雷, 邱流潮. (超)疏水水泥基材料的研究进展[J]. 材料导报, 2021, 35(19): 19070-19080.
[15] 苏丽芬, 常展鹏, 宁玉盈, 汪路, 方雅涵, 方炳虎, 柯玉超, 杨斌, 夏茹, 钱家盛, 苗蕾. 柔性多孔硅橡胶负载纳米CuS的太阳能蒸发性能研究[J]. 材料导报, 2021, 35(18): 18024-18029.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed