Please wait a minute...
材料导报  2022, Vol. 36 Issue (15): 21020062-6    https://doi.org/10.11896/cldb.21020062
  金属与金属基复合材料 |
钛合金表面不同多层结构Cr/CrAlN涂层的制备及磨损性能
张向东1, 蔡习军2,3,4, 蔡飞2,3,*, 张世宏2,3,4, 陈利1
1 中南大学粉末冶金国家重点实验室,长沙 410083
2 安徽工业大学先进金属材料绿色制备与表面技术教育部重点实验室,安徽 马鞍山 243000
3 安徽工业大学现代表界面工程研究中心,安徽 马鞍山 243000
4 安徽工业大学材料科学与工程学院,安徽 马鞍山 243000
Preparation and Wear Properties of Cr/CrAlN Coatings with Different Multilayer Structures on the Titanium Alloy Surface
ZHANG Xiangdong1, CAI Xijun2,3,4, CAI Fei2,3,*, ZHANG Shihong2,3,4, CHEN Li1
1 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
2 Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Education, Anhui University of Technology, Maanshan 243000, Anhui, China
3 Research Center of Modern Surface and Interface Engineering, Anhui University of Technology, Maanshan 243000, Anhui, China
4 School of Material Science and Engineering, Anhui University of Technology, Maanshan 243000, Anhui, China
下载:  全 文 ( PDF ) ( 12035KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善TC4钛合金(Ti-6A1-4V)表面力学性能和抗磨损性能,利用多弧离子镀技术在其表面沉积制备Cr层与CrAlN层交替(1、5和10个循环周期)沉积的Cr/CrAlN多层涂层。采用扫描电镜(SEM)、X射线衍射(XRD)、轮廓仪、洛氏压痕仪、显微硬度计、球盘摩擦磨损等对涂层的微观结构和性能进行研究。结果表明:Cr/CrAlN-1涂层的主要物相为固溶的(Al,Cr)N相,而Cr/CrAlN-5和Cr/CrAlN-10多层涂层的主要物相为固溶的(Al,Cr)N相和Cr相。随着循环周期的增加,(Al,Cr)N相的优先生长方向由(111)晶面转变为(200)晶面,同时涂层的晶粒尺寸减小。金属Cr层的加入和多层结构可以显著增加Cr/CrAlN多层涂层的膜-基结合强度。此外,Cr/CrAlN涂层显著提升了钛合金基体的硬度和耐磨性能,其中Cr/CrAlN-1的显微硬度(2 465HK0.025)最高,而Cr/CrAlN-5的磨损率(1.52×10-6 mm3·N-1·m-1)最低,Cr/CrAlN多层涂层的磨损失效机理主要为氧化磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张向东
蔡习军
蔡飞
张世宏
陈利
关键词:  Cr/CrAlN多层涂层  多弧离子镀  微观结构  磨损    
Abstract: In order to improve the surface mechanical properties and wear performance of TC4 alloys (Ti-6A1-4V), Cr/CrAlN coatings with different multilayer structures (1,5,10) were deposited on the surface of the titanium alloy by multi-arc ion plating technology. Scanning electron microscopy (SEM), X-ray diffraction (XRD), profilometer, Rockwell indentation tester, micro-hardness tester and ball-on-disc tri-bometer were used to study the microstructure and properties of Cr/CrAlN multilayer coatings. As the results shown, the main phase of the Cr/CrAlN-1 coating was the (Al, Cr)N phase, while these of the Cr/CrAlN-5 and Cr/CrAlN-10 multilayer coatings were the (Al, Cr)N and Cr phases. With the increase of cycling layer structure, the preferred growth orientation of the (Al, Cr)N phase changed from (111) plane to (200) plane, and the grain size of Cr/CrAlN multilayer coatings also decreased. Addition of metal Cr layers and mutilayer structures can improve the adhesion of Cr/CrAlN multilayer coatings to the TC4 alloy substrate. Cr/CrAlN multilayer coatings significantly increase the hardness and wear resistance of the titanium alloy, and the Cr/CrAlN-1 coating shows the highest micro-hardness of 2 465HK0.025, while the Cr/CrAlN-5 coating shows the lowest wear rate of 1.52×10-6 mm3·N-1·m-1. The main wear failure mechanism of Cr/CrAlN multilayer coatings was oxidation wear.
Key words:  Cr/CrAlN multilayer coating    multi arc ion plating    microstructure    wear
出版日期:  2022-08-10      发布日期:  2022-08-15
ZTFLH:  TG17  
基金资助: 安徽省自然科学基金(1808085QE131);清华大学摩擦学国家重点实验室开放基金资助项目(SKLTKF18B13);国家自然科学基金(51775560;51305002,51522502)
通讯作者:  *caifei32@126.com   
作者简介:  张向东,现为中南大学粉末冶金研究院在读本科生,目前研究领域为PVD硬质涂层。
蔡飞,安徽工业大学讲师,博士,硕士研究生导师。2016年6月毕业于上海交通大学。以第一作者/通讯作者在Wear、Tribology International、Applied Surface Science、《机械工程学报》等SCI/EI期刊发表论文20余篇;申请国家发明专利10项,授权5项;担任多个学术期刊的审稿人。研究方向为PVD硬质涂层、内应力分析。
引用本文:    
张向东, 蔡习军, 蔡飞, 张世宏, 陈利. 钛合金表面不同多层结构Cr/CrAlN涂层的制备及磨损性能[J]. 材料导报, 2022, 36(15): 21020062-6.
ZHANG Xiangdong, CAI Xijun, CAI Fei, ZHANG Shihong, CHEN Li. Preparation and Wear Properties of Cr/CrAlN Coatings with Different Multilayer Structures on the Titanium Alloy Surface. Materials Reports, 2022, 36(15): 21020062-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020062  或          http://www.mater-rep.com/CN/Y2022/V36/I15/21020062
1 Luo Y F, Xie Y H, Cao L, et al. Materials Science and Engineering: A, 2020, 787, 139493.
2 Jiang J, Zhao Y W, Wang X X, et al. Materials Science and Enginee-ring: A, 2020,794,139808.
3 Bansal D G, Eryilmaz O L, Blau P J. Wear, 2011, 271, 2006.
4 Cai X J, Gao Y, Cai F, et al. Applied Surface Science, 2019, 483, 661.
5 Cai F, Zhang J M, Wang J M, et al. Tribology International, 2021, 153, 106657.
6 Polcar T, Cavaleiro A. Surface & Coatings Technology, 2011, 206(6), 1244.
7 Poliana S S, Anderson J S, Monique A P C, et al. Tribology Internatio-nal, 2020,146, 106206.
8 Mo J L, Zhu M H. Wear, 2009, 267, 874.
9 Wiecinski P, Smolik J, Garbacz H, et al. Vacuum, 2014, 107, 277.
10 Arias D F, Gomez A, Souza R M, et al. Materials Chemistry & Physics, 2018, 204, 269.
11 Vetter J, Lugscheider E, Guerreiro S S, Surface & Coatings Technology, 1998, 98, 1233.
12 Wang P, Xu C Q, Cai F, et al. China Surface Engineering, 2019, 32(2), 34.
汪鹏,许昌庆,蔡飞, 等.中国表面工程,2019, 32(2), 34.
13 Li J L, Zhang S H, Li M X. Applied Surface Science, 2013, 283(14), 134.
14 Cai F, Chen P F, Zhang S H, et al. Surface Engineering, 2019, 35, 154.
15 Cai Z B, Wang Z, Zhu M H et al. Journal of Mechanical Engineering, 2017, 53(24), 12.
蔡振兵,王璋,朱旻昊.机械工程学报,2017, 53(24), 12.
16 Jehn H, Reiners G, Siegel N. The adhesion strength quality of thin film was evaluated by Daimler Benz Rockwell-C (HRC-DB) tester, Beuth Verlag, Berlin, 1993, pp.213.
17 Xu W W, Davila L P. Materials Science and Engineering: A, 2018, 710, 413.
18 Vasilev Y N, Kolyaev I A, Fugol V A. Journal of Friction and Wear, 2011, 32, 27.
19 Beliardouh N E, Bouzid K, Nouveau C, et al. Tribology International, 2015, 82, 443.
[1] 史雪飞, 杨正海, 张永振. 系统弹性对载流摩擦副无电条件下摩擦磨损性能的影响[J]. 材料导报, 2023, 37(5): 21080045-5.
[2] 万林林, 周启明, 邓朝晖. 工程陶瓷磨削过程的声发射在线监测研究进展[J]. 材料导报, 2023, 37(4): 21050196-11.
[3] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[4] 杨智勇, 臧家俊, 韩超, 李卫京, 李志强. SiCp/A356材料MAO膜与合成材料摩擦副的摩擦稳定性研究[J]. 材料导报, 2022, 36(9): 21030164-8.
[5] 房尚龙, 宋绪丁, 陈克文, 段亚萍. 片状钛酸钾镁对摩擦材料性能的影响[J]. 材料导报, 2022, 36(8): 20060290-5.
[6] 刘川北, 高建明, 孟礼元, 刘来宝, 张礼华, 张红平, 罗旭. 聚合物和纤维对石膏基材料早期水化与浆体微结构的影响[J]. 材料导报, 2022, 36(8): 20090176-7.
[7] 卞灿星, 钱钰, 崔功军, 刘燕萍, 寇子明. 钇(Y)元素强化的CoCrNiFe基高温自润滑复合涂层的摩擦学性能[J]. 材料导报, 2022, 36(8): 21010202-8.
[8] 张仲, 吕晓仁, 于鹤龙, 徐滨士. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 20110101-8.
[9] 陈文元, 谈辉, 程军, 朱圣宇, 杨军. 冷喷涂铜基复合涂层摩擦学性能研究进展与展望[J]. 材料导报, 2022, 36(7): 21080083-7.
[10] 朱咸勇, 丁振宇, 马国政, 朴钟宇, 付田力, 周雳, 于天阳, 郭伟玲, 王海斗. 三元MAX相层状陶瓷材料高温摩擦学性能研究进展[J]. 材料导报, 2022, 36(7): 21090166-11.
[11] 王好平, 张蒙祺, 莫继良. 盾构/TBM滚刀刀圈性能强化研究现状[J]. 材料导报, 2022, 36(7): 22010052-9.
[12] 李爽, 张青松, 戴光泽. 预制裂纹对等离子体淬火车轮材料磨损行为的影响[J]. 材料导报, 2022, 36(5): 20120250-7.
[13] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[14] 张倩倩, 陈冲, 张聪, 马晶博, 张程, 毛丰. 硼对高铬铸铁铸渗层组织和性能的影响[J]. 材料导报, 2022, 36(4): 20110229-7.
[15] 范青杰, 杨子健, 赖仕全, 岳莉, 朱亚明, 赵雪飞. 喹啉沥青的合成及其富氮衍生炭的微观结构研究[J]. 材料导报, 2022, 36(4): 20120072-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed