Please wait a minute...
材料导报  2022, Vol. 36 Issue (8): 20060290-5    https://doi.org/10.11896/cldb.20060290
  无机非金属及其复合材料 |
片状钛酸钾镁对摩擦材料性能的影响
房尚龙1, 宋绪丁1, 陈克文2, 段亚萍2
1 长安大学道路施工技术与装备教育部重点实验室,西安 710064
2 中国建材检验认证集团咸阳有限公司,陕西 咸阳 712021
Effect of Flaky Potassium Magnesium Titanate on the Properties of Friction Material
FANG Shanglong1, SONG Xuding1, CHEN Kewen2, DUAN Yaping2
1 Key Laboratory of Road Construction Technology and Equipment, MOE, Chang'an University, Xi'an 710064,China
2 China Building Material Test & Certification Group Xianyang Co., Ltd., Xianyang 712021, Shaanxi, China
下载:  全 文 ( PDF ) ( 4327KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钛酸钾晶须已被广泛用作刹车片的增强材料,但纤维状的钛酸钾晶须在生产过程中极易飘散,被人体吸入后会造成严重的健康损害。因此,探寻更加环保的钛酸钾晶须的替代材料具有十分重要的意义。本工作以片状钛酸钾镁替代钛酸钾晶须,并进行了其含量对摩擦材料的力学性能和摩擦磨损性能影响的试验研究。试验结果表明:随着片状钛酸钾镁含量的增加,材料的冲击韧性下降,但都大于0.45 J/cm2,洛氏硬度保持在80HRM左右,满足了摩擦材料的力学性能要求;当钛酸钾镁含量为14%(质量分数,下同)时,摩擦表面能形成稳定的摩擦膜,100~350 ℃时其摩擦系数保持在0.35~0.48,材料的总磨损率为0.54×10-7 cm3/(N·m),此时材料的摩擦磨损性能最佳。随着片状钛酸钾镁含量的增加,材料的热衰退率显著下降,明显优于钛酸钾晶须增强的摩擦材料,因此片状钛酸钾镁可以完全代替钛酸钾晶须成为更加环保的增强材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
房尚龙
宋绪丁
陈克文
段亚萍
关键词:  摩擦材料  钛酸钾晶须  钛酸钾镁  磨损率  热衰退率    
Abstract: Potassium titanate whiskers have been widely used as brake pad reinforcement materials, but the potassium titanate whiskers are very easy to disperse in the production process and to cause serious health damage by inhalation. Therefore, it is of great significance to explore more environmentally friendly alternative materials for potassium titanate whiskers. In this paper, the flaky potassium magnesium titanate was used as the substitute of potassium titanate whisker. The effect of the content of the flaky potassium magnesium titanate on the mechanical and friction properties of friction materials was studied. The results show that the impact toughness of the friction material decreases with the increase of the content of the flaky potassium magnesium titanate, it is greater than 0.45 J/cm2, and the Rockwell hardness is maintained at about 80HRM, which meets the mechanical property requirements of friction materials. When the content of the flaky potassium magnesium titanate is 14wt%, the best friction and wear properties of friction materials are better than potassium titanate whisker reinforced friction materials. The friction coefficient of 100—350 ℃ is kept between 0.35—0.48, the total wear rate of the friction material is 0.54×10-7 cm3/(N· m) and a stable friction film can be formed on the friction surface. The thermal degradation rate of the material decreased obviously with the increase of the content of potassium magnesium titanate, which is better than that of the friction material reinforced by potassium titanate whisker. The flake potassium magnesium titanate can completely replace potassium titanate whiskers to become a more environmentally friendly reinforced material.
Key words:  friction material    potassium titanate whiskers    potassium magnesium titanate    wear rate    thermal degradation rate
出版日期:  2022-04-25      发布日期:  2022-04-27
ZTFLH:  TH117.1  
基金资助: 国家重点研发计划(2017YFB0310903)
通讯作者:  songxd@chd.edu.cn   
作者简介:  房尚龙,2017年6月毕业于青岛科技大学,获得工学学士学位。现为长安大学工程机械学院博士研究生,在宋绪丁教授的指导下进行研究。目前主要研究领域是摩擦材料。
宋绪丁,1985年毕业于西安公路学院,获得工学学士学位,1991年毕业于西安公路交通大学,获得硕士学位,2008年毕业于长安大学,获得博士学位,现为长安大学教授,博士研究生导师。主要研究方向为摩擦材料和耐磨材料。先后承担国家级和省部级项目五项,发表学术论文100余篇,授权发明专利10项。
引用本文:    
房尚龙, 宋绪丁, 陈克文, 段亚萍. 片状钛酸钾镁对摩擦材料性能的影响[J]. 材料导报, 2022, 36(8): 20060290-5.
FANG Shanglong, SONG Xuding, CHEN Kewen, DUAN Yaping. Effect of Flaky Potassium Magnesium Titanate on the Properties of Friction Material. Materials Reports, 2022, 36(8): 20060290-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060290  或          http://www.mater-rep.com/CN/Y2022/V36/I8/20060290
1 Aranganathan N, Mahale V, Bijwe J. Wear,2016,354-355,69.
2 Guo K, Zhang Z Q, Song R B, et al. Chinese Journal of Materials Research,2020,34(4),304(in Chinese).
郭客,张志强,宋仁伯,等.材料研究学报,2020,34(4),304.
3 Bijwe J. Polymer Composites,1997,18(3),378.
4 Kim S J, Cho M H, Basch R H, et al. Tribology Letters,2004,17(3),655.
5 Liu X B, Li C S, Liang P, et al. Materials Reports,2013,27(S1),265(in Chinese).
刘晓斌,李呈顺,梁萍,等.材料导报,2013,27(S1),265.
6 Teng X, Wen L, Lv Y, et al. High Performance Polymers,2017,30(6),752.
7 Yuan R P. Brake friction materials: performance evaluation ecological friendliness and their wear mechnisms. Ph. D. Thesis, Beijing University of Chemical Technology, China,2011(in Chinese).
员荣平.制动摩擦材料的性能评价、环境友好性和摩擦机理研究.博士学位论文,北京化工大学,2010.
8 Hu X L. Yang H S, Lan Q, et al. Acta Materiae Compositae Sinica,2016,33(11),2436(in Chinese).
胡晓兰,羊宏山,兰茜,等.复合材料学报,2016,33(11),2436.
9 Cheng Y, He L, Zhou Y K, et al. Journal of Materials Engineering,2010(11),57(in Chinese).
程尧,何林,周元康,等.材料工程,2010(11),57.
10 Jara D C,Jang H. Wear,2019,430-431,222.
11 Lee J J, Lee J A, Kwon S, et al. Tribology International,2018,120,70.
12 Yoko I, Hiroko K, Norihiko K, et al. Inhalation Toxicology,2002,14(5),503.
13 Liu B W, Xu F, Liu Y, et al. Materials Reports B:Research Papers,2017,31(12),45(in Chinese).
刘伯威,徐菲,刘咏,等.材料导报:研究篇,2017,31(12),45.
14 Bai K J, Wang W P. Tianjin Auto,2008,8,58.
15 Cho K H, Min H C, Kim S J, et al. Tribology Letters,2008,32(1),59.
16 Eriksson M, Bergman F, Jacobson S. Wear,2002,252(1-2),26.
17 He H W, Song X D, Fang S L. Composites Science and Engineering,2020(3),61(in Chinese).
贺怀文,宋绪丁,房尚龙.复合材料科学与工程,2020(3),61.
18 Xiang L K, Huang S G, Jin P. Auto Engineer,1997(3),11(in Chinese).
向丽康,黄顺根,金萍.汽车工程师,1997(3),11.
19 Tang C F, Lu Y. Journal of Reinforced Plastics & Composites,2004,23(23),51.
[1] 朱咸勇, 丁振宇, 马国政, 朴钟宇, 付田力, 周雳, 于天阳, 郭伟玲, 王海斗. 三元MAX相层状陶瓷材料高温摩擦学性能研究进展[J]. 材料导报, 2022, 36(7): 21090166-11.
[2] 陈思潭, 冯可芹, 张燕燕, 蔡雨晨. 利用热处理改善钒钛磁铁矿直接制备的铁基摩擦材料组织与性能[J]. 材料导报, 2021, 35(14): 14120-14124.
[3] 黄文豪, 陶平均, 龙德武, 张超汉, 朱坤森, 杨元政. 低树脂基NAO型盘式刹车片摩擦材料的制备及摩擦学性能[J]. 材料导报, 2020, 34(Z1): 563-566.
[4] 罗恒, 王优强, 张平. 双液淬火下7A09铝合金的干滑动摩擦磨损性能[J]. 材料导报, 2020, 34(24): 24109-24113.
[5] 苏新, 王振生, 彭真, 郭建亭. 不同环境气氛中NiAl-2.5Ta-7.5Cr-1B-5Co-2.5Re合金的摩擦磨损特性[J]. 材料导报, 2019, 33(2): 288-292.
[6] 赵晓光, 欧阳静, 张毅, 杨华明. 矿物基摩擦材料的研究进展[J]. 材料导报, 2019, 33(11): 1860-1868.
[7] 张翔, 甘春雷, 黎小辉, 张辉, 郑开宏, 农登. 氧化铝纤维含量对陶瓷基摩擦材料性能的影响[J]. 材料导报, 2018, 32(20): 3517-3523.
[8] 龚乾江,徐 祥,杨 明,张世伟,肖 瑞. CPR/NR和高性能填料对复合摩擦材料力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1628-1634.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[3] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[4] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[5] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[6] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[7] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[8] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[9] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
[10] YU Fei, CUI Tianran, CHEN Dexian, YAO Wenhao, SUN Yiran, MA Jie, HE Yiwen. Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water[J]. Materials Reports, 2018, 32(20): 3645 -3653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed