Please wait a minute...
材料导报  2022, Vol. 36 Issue (8): 21010202-8    https://doi.org/10.11896/cldb.21010202
  金属与金属基复合材料 |
钇(Y)元素强化的CoCrNiFe基高温自润滑复合涂层的摩擦学性能
卞灿星1,2,3, 钱钰1,2,3, 崔功军1,2,3, 刘燕萍1,2,3, 寇子明1,2,3
1 太原理工大学机械与运载工程学院,太原 030024
2 山西省矿山流体控制工程实验室,太原 030024
3 矿山流体控制国家地方联合工程实验室,太原 030024
Tribological Properties of CoCrNiFe Matrix High-temperature Composite Coatings Reinforced by Yttrium Element
BIAN Canxing1,2,3, QIAN Yu1,2,3, CUI Gongjun1,2,3, LIU Yanping1,2,3, KOU Ziming1,2,3
1 College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2 Shanxi Mine Fluid Control Engineering Laboratory, Taiyuan 030024, China
3 National-local Joint Engineering Laboratory of Mine Fluid Control, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 20905KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用热压烧结技术在GH4169镍合金表面制备Y(0.5%、1.0%、2.0%(质量分数))强化的CoCrNiFe基高温自润滑复合涂层,系统研究了Y对CoCrNiFe基涂层微观组织和高温摩擦学性能的影响,优化Y含量。在室温到1 000 ℃内,采用球-盘配置的摩擦试验机与Si3N4球配副测试涂层的高温摩擦学性能。使用X射线衍射仪(XRD)、扫描电镜(SEM)分析涂层的微结构及高温摩擦磨损机理。结果表明:涂层由γ-Co(fcc)、ε-Co(hcp)、FeNi3、Ni2.9Cr0.7Fe0.36和Y2O3相组成。在烧结过程中,Y与金属颗粒表面吸附的氧或其他氧化物杂质反应净化了晶界,所生成的Y2O3明显改善了涂层的硬度和致密度。涂层的显微硬度和致密度随着Y含量的增加而升高。涂层试样的摩擦系数随温度的升高先减小后增大,在800 ℃时达到最小值。其磨损率变化趋势则相反,在20~600 ℃内,涂层的磨损率较基底下降23.64%~95.90%,1 000 ℃时磨损率约为3×10-5 mm3/(N·m)。这归因于涂层的高硬度以及Y2O3强化的氧化物润滑层的润滑作用。含1.0%Y的涂层表现出最佳的高温摩擦学性能。涂层在低温下的磨损机理为磨粒磨损和轻微的塑性变形,高温时的磨损机理主要为氧化磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卞灿星
钱钰
崔功军
刘燕萍
寇子明
关键词:  钴基复合涂层  高温  摩擦  磨损    
Abstract: The CoCrNiFe matrix composite coatings with Y (0.5wt%, 1.0wt%, 2.0wt%) were prepared on the surface of GH4169 nickel alloy by powder metallurgy technology. The effects of Y on the microstructure and tribological properties of the coatings were systematically investigated, and the Y content was optimized. The high-temperature tribological behaviors were tested by using ball-on-disc tribo-tester from room tempe-rature to 1 000 ℃ sliding against Si3N4 ball. The XRD and SEM technologies were used to analyze the microstructure and high-temperature wear mechanism of the coatings. The main phases of the coatings consisted of γ-Co(fcc), ε-Co(hcp), FeNi3, Ni2.9Cr0.7Fe0.36 and Y2O3. The Y element reacted with the adsorbed oxygen and other oxide impurities on the surface of metal particles during the sintering, so the grain boundaries were purified. The Y2O3 could effectively enhance the hardness and compactness of the coatings, and the hardness and compactness of the coatings were improved with the increase of Y element content. The friction coefficients of the coatings first decreased and then increased with the increase of temperature, and the coatings showed the minimum friction coefficients at 800 ℃. However, the wear rates had an opposite trend. From 20 ℃ to 600 ℃. The wear rates of the coatings were 23.64%—95.90% lower than that of the substrate, and the wear rate was about 3×10-5 mm3/(N·m) at 1 000 ℃. It was ascribed to the high hardness and the lubricating effect of oxide film reinforced by Y2O3. Generally, the composite coating with 1.0wt% Y had the best tribological properties at high temperature. The wear mechanism of the coatings was abrasive wear and slight plastic deformation at low temperature while oxidation wear was the wear mechanism at high temperature.
Key words:  cobalt matrix composite coating    high temperature    friction    wear
出版日期:  2022-04-25      发布日期:  2022-04-27
ZTFLH:  TG174.44  
基金资助: 国家自然科学基金(51775365);国家自然科学基金青年基金(51405329)
通讯作者:  cuigongjun@tyut.edu.cn   
作者简介:  卞灿星,2018年本科毕业于北华大学。现为太原理工大学硕士研究生,目前主要研究领域为机械摩擦学。
崔功军,2013年毕业于中国科学院兰州化学物理研究所,获得博士学位,现为太原理工大学教授,主要从事机械摩擦学及表面技术研究。近几年在国内外发表学术论文40余篇,其中SCI收录论文30余篇。主持国家自然科学青年基金1项、国家自然科学基金面上项目1项、博士后面上项目一等资助1项,授权发明专利5项、软件著作权8项等。
引用本文:    
卞灿星, 钱钰, 崔功军, 刘燕萍, 寇子明. 钇(Y)元素强化的CoCrNiFe基高温自润滑复合涂层的摩擦学性能[J]. 材料导报, 2022, 36(8): 21010202-8.
BIAN Canxing, QIAN Yu, CUI Gongjun, LIU Yanping, KOU Ziming. Tribological Properties of CoCrNiFe Matrix High-temperature Composite Coatings Reinforced by Yttrium Element. Materials Reports, 2022, 36(8): 21010202-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010202  或          http://www.mater-rep.com/CN/Y2022/V36/I8/21010202
1 Zhu S Y, Cheng J, Qiao Z H, et al. Tribology International,2018,133,206.
2 Chen J M, Lu X W, Li H X, et al. Tribology,2014,34(5),592(in Chinese).
陈建敏,卢小伟,李红轩,等.摩擦学学报,2014,34(5),592.
3 Liu E Y, Jia J H, Gao Y M, et al. China Surface Engineering,2015,28(4),1(in Chinese).
刘二勇,贾均红,高义民,等.中国表面工程,2015,28(4),1.
4 Yuan X J, Guan N, Hou G L, et al. Materials Reports,2020,34(5),05061(in Chinese).
袁晓静,关宁,侯根良,等.材料导报,2020,34(5),05061.
5 Li B Y, Cao Z Q. Surface Technology,2017,46(9),32(in Chinese).
李博雅,曹志强.表面技术,2017,46(9),32.
6 Xi W C, Song B X, Wang Z, et al. Surface Technology,2019,48(3),211(in Chinese).
郗文超,宋博学,王钊,等.表面技术,2019,48(3),211.
7 Zhou C J, Zhu S, Wang X M, et al. Materials Reports A:Review Papers,2018,32(10),3444(in Chinese).
周超极,朱胜,王晓明,等.材料导报:综述篇,2018,32(10),3444.
8 Yang B, Yu J S, Gu Q C, et al. Materials Reports,2021,35(3),3050(in Chinese).
杨博,余金山,顾全超,等.材料导报,2021,35(3),3050.
9 Farnia A, Malek G F, Rao J C, et al. Surface & Coatings Technology,2012,213,278.
10 Birol Y. Wear,2010,269(9),664.
11 Li X, Zhang C H, Zhang S, et al. Optics and Laser Technology,2019,114,209.
12 Korashy A, Attia H, Thomson V, et al. Tribology International,2020,145,106155.
13 Dreano A, Fouvry S, Guillonneau G. Wear,2020,452-453,203297.
14 Song T, Tan X X, Tan Z J, et al. Surface Technology,2017,46(8),201(in Chinese).
宋涛,谭晓晓,谭志俊,等.表面技术,2017,46(8),201.
15 Zheng Z B, Wang S, Long J, et al. Corrosion Science,2020,164,108359.
16 Nouri M, Sun X G, Li D Y. Tribology International,2013,67,154.
17 Yang X D, Li C W, Zhang Z Y, et al. Applied Surface Science,2020,521,146360.
18 Zhong L X, Yang M B. Journal of Chongqing University of Technology(Natural Science),2019,33(1),99(in Chinese).
钟罗喜,杨明波.重庆理工大学学报(自然科学版),2019,33(1),99.
19 You X C. Journal of Chongqing University of Technology(Natural Science),2020,34(6),123(in Chinese).
游晓畅.重庆理工大学学报(自然科学版),2020,34(6),123.
20 Liu Q F, Chen C J, Zhang M. Materials Characterization,2020,165,110401.
21 Mengis L, Grimme C, Galetz M C. Wear,2019,426-427,341.
22 Cui G J, Yang Z W, Wang W J, et al. Journal of Central South University,2019,26(10),2643.
23 Wang Y, Zeng W, Han J, et al. Materials Reports,2020,34(18),18119(in Chinese).
王宇,曾伟,韩靖,等.材料导报,2020,34(18),18119.
24 Bao Z B, Jiang C Y, Zhu S L, et al. Journal of Aeronautical Materials,2018,38(2),21(in Chinese).
鲍泽斌,蒋成洋,朱圣龙,等.航空材料学报,2018,38(2),21.
25 Zhou Z Y, Zhuang S G, Yang X H, et al. Journal of Materials Enginee-ring,2019,47(3),101(in Chinese).
周仲炎,庄宿国,杨霞辉,等.材料工程,2019,47(3),101.
26 Qu S G, Yuan Z M, Lai F Q, et al. Journal of Central South University (Science and Technology),2018,49(5),1087(in Chinese).
屈盛官,袁志敏,赖福强,等.中南大学学报(自然科学版),2018,49(5),1087.
27 Zhang T G, Zhuang H F, Zhang Q, et al. Ceramics International,2020,46(9),13711.
28 Cui G J, Liu H Q, Li S, et al. Journal of Materials Research and Techno-logy,2020,9(2),2402.
[1] 房尚龙, 宋绪丁, 陈克文, 段亚萍. 片状钛酸钾镁对摩擦材料性能的影响[J]. 材料导报, 2022, 36(8): 20060290-5.
[2] 张朝, 黄太文, 蒲茜, 张家晨, 张军, 苏海军, 郭敏, 刘林. 流态床冷却定向凝固技术研究进展[J]. 材料导报, 2022, 36(7): 20090249-6.
[3] 张仲, 吕晓仁, 于鹤龙, 徐滨士. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 20110101-8.
[4] 郑梓璇, 王德刚, 梁国杰, 栗丽, 王馨博, 苏茹月, 李凯. 聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究[J]. 材料导报, 2022, 36(7): 21060034-7.
[5] 陈文元, 谈辉, 程军, 朱圣宇, 杨军. 冷喷涂铜基复合涂层摩擦学性能研究进展与展望[J]. 材料导报, 2022, 36(7): 21080083-7.
[6] 龙伟民, 秦建, 路全彬, 刘大双, 吴爱萍. 旋耕刀感应钎涂层热处理工艺研究[J]. 材料导报, 2022, 36(7): 21090163-5.
[7] 朱咸勇, 丁振宇, 马国政, 朴钟宇, 付田力, 周雳, 于天阳, 郭伟玲, 王海斗. 三元MAX相层状陶瓷材料高温摩擦学性能研究进展[J]. 材料导报, 2022, 36(7): 21090166-11.
[8] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[9] 王好平, 张蒙祺, 莫继良. 盾构/TBM滚刀刀圈性能强化研究现状[J]. 材料导报, 2022, 36(7): 22010052-9.
[10] 周维, 樊坤阳, 黄淙, 刘子京, 万维财, 贡太敏. 烧结温度对团聚高温快速烧结WC-10Co-4Cr粉末及其HVOF涂层性能的影响[J]. 材料导报, 2022, 36(6): 20120041-6.
[11] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[12] 李爽, 张青松, 戴光泽. 预制裂纹对等离子体淬火车轮材料磨损行为的影响[J]. 材料导报, 2022, 36(5): 20120250-7.
[13] 张倩倩, 陈冲, 张聪, 马晶博, 张程, 毛丰. 硼对高铬铸铁铸渗层组织和性能的影响[J]. 材料导报, 2022, 36(4): 20110229-7.
[14] 段广宇, 李玥, 胡静文, 胡祖明, 于翔, 迟长龙. 耐高温聚间苯二甲酰间苯二胺介电复合材料的制备及性能[J]. 材料导报, 2022, 36(4): 20120097-6.
[15] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[3] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[4] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[5] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[6] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[7] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[8] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[9] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
[10] YU Fei, CUI Tianran, CHEN Dexian, YAO Wenhao, SUN Yiran, MA Jie, HE Yiwen. Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water[J]. Materials Reports, 2018, 32(20): 3645 -3653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed