Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 20090249-6    https://doi.org/10.11896/cldb.20090249
  金属与金属基复合材料 |
流态床冷却定向凝固技术研究进展
张朝, 黄太文, 蒲茜, 张家晨, 张军, 苏海军, 郭敏, 刘林
西北工业大学凝固技术国家重点实验室,西安 710072
Research Progress of Directional Solidification Technology with Fluidized Bed Quenching
ZHANG Chao, HUANG Taiwen, PU Qian, ZHANG Jiachen, ZHANG Jun, SU Haijun, GUO Min, LIU Lin
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
下载:  全 文 ( PDF ) ( 3782KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镍基单晶高温合金具有良好的高温力学性能,是航空发动机和燃气轮机热端部件的首选材料。高速凝固法是一种通过抽拉系统将充满熔融金属的模壳移出加热区进行冷却的Bridgman定向凝固技术。其由于具有工艺成熟、设备结构简单及凝固组织相对稳定等优点,已成为制备航空发动机涡轮叶片最常用的定向凝固技术。
然而在制备燃气轮机用大尺寸单晶高温合金叶片时,由于高速凝固法的温度梯度较低限制了抽拉速率的提高,制备单晶叶片的过程中容易产生缺陷,使得叶片合格率较低。此外,采用较低的抽拉速率还会导致生产周期延长和能耗增加。而后续发展的气冷法和液态金属冷却法也存在很多问题,如气冷法的温度梯度仍然较低;液态金属冷却法虽然温度梯度较高,但是存在液态金属锡(Sn)会污染铸件、设备结构复杂难以维护和成本较高等问题。因此需要发展一种高温度梯度、不污染铸件、设备结构简单且成本较低的定向凝固技术。
流态床冷却法是一种采用固体颗粒和惰性气体两相复合冷却的Bridgman定向凝固技术。流态床具有较强的冷却能力,并且可以利用浮力设置一种浮在流态床表面的动态挡板,从而有效阻止热量从热区向冷区传递,因此流态床冷却法的温度梯度较高。同时,采用流态床冷却不会对铸件造成污染,并且流态床冷却定向凝固设备结构简单、易于维护、成本较低、生产周期较短,因此流态床冷却法在制备大尺寸单晶高温合金叶片方面有着良好的应用前景。
本文阐述了流态床冷却法的原理及特点,介绍了流态床冷却定向凝固设备的结构,总结了流态床冷却定向凝固设备中动态挡板的研究进展,分析了影响流态床冷却能力的因素,并对流态床冷却定向凝固技术的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张朝
黄太文
蒲茜
张家晨
张军
苏海军
郭敏
刘林
关键词:  高温合金  定向凝固  流态床冷却  温度梯度    
Abstract: Due to the excellent high-temperature mechanical performance, nickel-based single-crystal superalloys have developed indispensable mate-rials in the preparation of advanced aero-engines. The high rate solidification (HRS) method is a Bridgman directional solidification technology, which moves the mold filled with molten metal out of the heating zone for cooling. Because of its simple equipment and stable solidification structure, it has been the most common technology for the preparation of aero-engine blades.
However, in the process of preparing large-sized single-crystal superalloy turbine blades, the low thermal gradient of HRS method restricts the increasing of withdrawal rate, which leads to increase the tendency of defects formation, resulting in low yield of the blades. The lower withdrawal rate would also increase the production cycle and energy consumption. The gas cooling casting (GCC) method and liquid metal cooling (LMC) method developed later also have many problems, such as high cost, pollution of Sn, and the difficulties in equipment maintenance. Therefore, it is necessary to develop advanced directional solidification technology with high thermal gradient, clean cooling medium, simple equipment structure, and low cost.
The fluidized bed quenching (FBQ) method is a Bridgman directional solidification technology that uses solid particles and inert gas for cooling. The FBQ method can provide a higher thermal gradient due to the excellent cooling capacity and the existence of a dynamic baffle. The dynamic baffle effectively prevents heat transfer from the hot zone to the cold zone. Additionally, the fluidized bed does not contaminate the castings and it has the advantages of simple structure, low cost, short production cycle, and easy maintenance. Therefore, the FBQ method has a good application prospect in the process of large-sized nickel-based single-crystal superalloy turbine blades.
In this paper, the principles and characteristics of fluidized bed quenching are clarified, the structure of directional solidification technology with fluidized bed quenching are introduced, the research progress of dynamic baffles in directional solidification equipment with fluidized bed quen-ching are summarized, the influencing factors of the fluidized bed quenching capacity are analyzed, such as gas velocity and particle size, and the future research aspects of directional solidification technology with fluidized bed quenching are also prospected.
Key words:  superalloy    directional solidification    fluidized bed quenching    thermal gradient
发布日期:  2022-04-07
ZTFLH:  TG248  
基金资助: 国家自然科学基金(51631008;52071267;51771148;51690163;51971174);国家重点研发计划(2016YFB0701400);国家科技重大专项(2017-VI-0001-0070);陕西省自然科学基金(2020JM-122)
通讯作者:  linliu@nwpu.edu.cn   
作者简介:  张朝,2019年6月毕业于长安大学,获得工学学士学位。现为西北工业大学凝固技术国家重点实验室的博士研究生,在刘林教授的指导下进行研究。目前主要研究领域为大尺寸单晶叶片枝晶生长。
刘林,西北工业大学材料学院教授、博士研究生导师。与1988年12月在西北工业大学取得工学博士学位,1990年获德国著名亚历山大·冯·洪堡奖学金,于1991—1992年在德国柏林工业大学和马克斯·普朗克金属学研究所从事客座研究,1993年被评为博士生导师,1996—2001年担任西北工业大学科技处处长、校学术委员会秘书长,2002年以后在西北工业大学材料学院任教授、博士生导师。长期从事航空发动机用高温金属材料以及金属凝固理论和技术等方面的研究,以第一或通讯作者身份在Scripta Materialia、Journal of Materials Science & Technology、Superalloys、Journal of Alloys and Compounds、Advanced Engineering Materials、Materials Letters等SCI学术期刊发表研究论文200余篇。主持国家863、国家973、国家自然科学基金、国家重大科技专项等项目20余项。获国家发明奖1项、省部级科学技术奖6项,获得专利13项,合作出版了《先进材料定向凝固》、《航空航天材料定向凝固》等学术著作。
引用本文:    
张朝, 黄太文, 蒲茜, 张家晨, 张军, 苏海军, 郭敏, 刘林. 流态床冷却定向凝固技术研究进展[J]. 材料导报, 2022, 36(7): 20090249-6.
ZHANG Chao, HUANG Taiwen, PU Qian, ZHANG Jiachen, ZHANG Jun, SU Haijun, GUO Min, LIU Lin. Research Progress of Directional Solidification Technology with Fluidized Bed Quenching. Materials Reports, 2022, 36(7): 20090249-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090249  或          http://www.mater-rep.com/CN/Y2022/V36/I7/20090249
1 Reed R C.The superalloys fundamentals and applications, Cambridge University Press, UK, 2006. pp.19.
2 Ma D X.Acta Metallurgica Sinica, 2015, 51(10), 1179(in Chinese).
马德新. 金属学报, 2015, 51(10), 1179.
3 Luo L, Xiao C B, Chen J Y, et al. Journal of Materials Engineering, 2019, 47(6), 34(in Chinese).
罗亮,肖程波,陈晶阳,等.材料工程,2019,47(6),34.
4 Zhang J, Lou L H, Li H.Materials China, 2013,32(1),12(in Chinese).
张健,楼琅洪,李辉.中国材料进展, 2013,32(1),12.
5 Liu L, Zhang J, Shen J, et al.Materials China, 2010, 29(7), 1(in Chinese).
刘林, 张军, 沈军,等.中国材料进展, 2010, 29(7), 1.
6 Bridgman P W. US patent, US1793672, 1931.
7 Brundidge C L, Vandrasek D, Wang B, et al.Metallurgical and Mate-rials Transactions A, 2012, 43(3), 965.
8 Erickson J S, Owczarski W A, Curran P M.Metal Progress, 1971, 99(3), 58.
9 Brundidge C L, Miller J D, Pollock T M. Metallurgical and Materials Transactions A, 2011, 42(9), 2723.
10 Miller J D, Yuan L, Lee P D, et al. Acta Materialia, 2014, 69, 47.
11 Miller J D, Pollock T M. Acta Materialia, 2014, 78, 23.
12 Li Y F. Study on stray grain formation in the platform of Ni-based single crystal superalloys turbine blade. Ph.D. Thesis, North Western Ploytechnical University, China, 2018(in Chinese).
李亚峰.镍基单晶高温合金涡轮叶片平台杂晶缺陷研究. 博士学位论文,西北工业大学,2018.
13 Kates E L, Konter M, Roesler J. US patent, US5921310, 1999.
14 Giamei A F, Tschinkel J G. Metallurgical Transactions A, 1976, 7(9), 1427.
15 Elliott A J, Tin S, King W T, et al. Metallurgical and Materials Transactions A, 2004, 35(10), 3221.
16 Shen J, Xu Z G, Lu Y Z, et al. Metallurgical and Materials Transactions A, 2018, 49(9), 4003.
17 Zhang J, Wang L, Wang D, et al. Acta Metallurgica Sinica, 2019,55(9), 1077(in Chinese).
张健,王莉,王栋,等.金属学报, 2019,55(9), 1077.
18 Nakagawa Y G, Murakami K, Ohotomo A, et al. Transactions of the Iron and Steel Institute of Japan, 1980, 20(9), 614.
19 Su L S, Zhu Q Q, Liu B C, et al. Chemical Industry and Engineering Progress, 2017, 36(9), 3177(in Chinese).
苏鲁书,朱晴晴,刘丙超,等.化工进展, 2017, 36(9), 3177.
20 Li Y, Zheng P J, Zhang J B, et al. Materials Reports A:Review Papers, 2014, 28(12), 108(in Chinese).
李勇,郑碰菊,张建波,等.材料导报:综述篇, 2014,28(12), 108.
21 Liu A Y. Discrete particle simulation of hydrodynamics, heat transfer and combustion in fluidized bed. Ph.D. Thesis, Institute of Engineering Thermophsics Chinese Academy of Science, 2002(in Chinese).
刘安源.流化床内流动、传热及燃烧特性的离散颗粒模拟. 博士学位论文,中国科学院工程热物理研究所,2002.
22 Quested P N, Northwood J E. US patent, US4573516, 1986.
23 Zhang F S, Shen J, He Y H, et al. Materials Science & Technology, 2007(4), 445(in Chinese).
张丰收,沈军,贺跃辉,等.材料科学与工艺, 2007(4), 445.
24 Graham L D. US patent, US6035924, 2000.
25 Graham L D. US patent, US2004173336, 2004.
26 Hofmeister M, Wirth K E, Singer R F. EU patent, DE102014208922, 2014.
27 Hofmeister M, Singer R F. EU patent, DE102014216766, 2016.
28 Hofmeister M, Franke M M, Koerner C, et al. Metallurgical and Mate-rials Transactions B, 2017, 48(6), 3132.
29 Liu L, Huang T W, Qu M, et al. Journal of Materials Processing Technology, 2010, 210(1), 159.
30 Liu L, Sun D J, Huang T W, et al. Acta Metallurgica Sinica, 2018, 54(5), 615(in Chinese).
刘林, 孙德建, 黄太文,等. 金属学报, 2018, 54(5),615.
31 Franke M M, Hilbinger R M, Lohmueller A, et al. Journal of Materials Processing Technology, 2013, 213(12), 2081.
32 Rees A C, Davidson J F, Dennis J S, et al. Chemical Engineering Science, 2005, 60(4), 1143.
33 Graham L D, Rauguth B L. EU patent, EP1153681, 2001.
34 Zhang F S. Study on soft-contact electromagnetlc shaping and directional solidfication of special alloys. Ph.D. Thesis, North Western Ploytechnical University, China, 2003(in Chinese).
张丰收.特种合金软接触电磁成形定向凝固技术研究. 博士学位论文,西北工业大学,2003.
35 Reynoldson R, Huynh L M. International Journal of Materials and Pro-duct Technology, 2005, 24(1-4), 397.
36 Barley R W.Minerals Engineering, 1993, 6(7), 804.
37 Reynoldson R W.Heat treatment in fluidized beds, ASM Intl, US, 1993, pp.7.
[1] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[2] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[3] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[4] 范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
[5] 唐宏波, 解永强, 张红梅, 王宏杰, 胡北辰. 新型五温区碲化汞单晶炉热场结构数值模拟[J]. 材料导报, 2021, 35(z2): 121-126.
[6] 刘佳宾, 刘新灵, 李振. 粉末高温合金夹杂物引起疲劳裂纹萌生微观机理研究现状[J]. 材料导报, 2021, 35(z2): 385-390.
[7] 李博帅, 鲁金涛, 朱明, 黄锦阳, 党莹樱, 谷月峰. 镍铁基高温合金摩擦焊接接头在煤灰/烟气中的腐蚀行为[J]. 材料导报, 2021, 35(Z1): 395-401.
[8] 陈克选, 王向余, 李宜炤, 陈彦强, 杜茵茵. 水冷条件下WAAM温度场的数值模拟研究[J]. 材料导报, 2021, 35(4): 4165-4169.
[9] 徐仰涛, 马腾飞, 王永红. 钽元素对Co-8.8Al-9.8W合金微观组织和力学性能的影响规律[J]. 材料导报, 2021, 35(22): 22104-22108.
[10] 许章华, 谢志雄, 康茂东, 王俊, 董仕节, 彭志贤, 刘静. K4169高温合金铸件铸造缺陷修复及疲劳性能研究[J]. 材料导报, 2021, 35(22): 22115-22120.
[11] 权国政, 温志航, 沈力, 马遥遥, 张普, 张钰清, 詹宗杨. 镍基高温合金热塑性变形晶粒细化与粗化的博弈关系及演进[J]. 材料导报, 2021, 35(18): 18124-18130.
[12] 单国雷, 王龙, 孙元, 陈振斌, 李晓明, 张洪宇, 裴逍遥. 镍基单晶高温合金资源中关键金属的浸出行为研究[J]. 材料导报, 2021, 35(10): 10134-10140.
[13] 蒋健博, 黄以平, 李少林, 刘海浪, 彭治国, 谭毅. 电子束诱导定向凝固对硅中Fe杂质分凝的影响[J]. 材料导报, 2020, 34(Z2): 173-176.
[14] 李鑫, 谢辉, 杨宾, 李双明. Mg2(Si,Sn)基热电材料研究进展[J]. 材料导报, 2020, 34(Z1): 43-47.
[15] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed