Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22115-22120    https://doi.org/10.11896/cldb.20090159
  金属与金属基复合材料 |
K4169高温合金铸件铸造缺陷修复及疲劳性能研究
许章华1, 谢志雄1, 康茂东2, 王俊2, 董仕节1,3, 彭志贤4, 刘静4
1 湖北工业大学绿色轻工材料湖北省重点实验室,武汉 430070
2 上海交通大学上海市先进高温材料及其精密成形重点实验室,上海 200240
3 武汉轻工大学,武汉 430023
4 武汉科技大学耐火材料与冶金国家重点实验室,武汉 430081
Study of Casting Defect Repair and Fatigue Performance of K4169 Superalloy Casting
XU Zhanghua1, XIE Zhixiong1, KANG Maodong2, WANG Jun2, DONG Shijie1,3, PENG Zhixian4, LIU Jing4
1 Hubei Provincial Key Laboratory of Green Light Industrial Materials, Hubei University of Technology, Wuhan 430070, China
2 Shanghai Key Laboratory of Advances High-temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China
3 Wuhan Polytechnic University, Wuhan 430023,China
4 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
下载:  全 文 ( PDF ) ( 3783KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用TIG焊对K4169高温合金薄片中铸造组织缺陷进行修复,并对修复前后的合金薄片进行疲劳性能测试和显微组织分析。结果表明:铸造缺陷对合金薄片疲劳性能的影响很大,含铸造缺陷的合金薄片疲劳寿命不到3万周次,而不含铸造缺陷的合金薄片疲劳寿命达7.1万周次。含铸造缺陷的样品经过TIG焊接修复后,疲劳寿命仍达6~9万周次,接近甚至超过了不含缺陷的试样疲劳寿命,这表明合适的焊接修复方法不会降低高温合金薄片的疲劳性能。铸件焊接修复后疲劳寿命高的原因是,焊缝中析出的较粗大相数量多、分布均匀,且疲劳裂纹扩展过程中产生较多的二次裂纹引发了裂纹偏移和扩展路径增长。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许章华
谢志雄
康茂东
王俊
董仕节
彭志贤
刘静
关键词:  K4169高温合金  焊接修复  疲劳寿命  二次裂纹    
Abstract: TIG welding method was used to repair the defects of the cast structure in the K4169 superalloy plates, and the fatigue performance test and microstructure analysis of the alloy plates before and after repair were performed. The results show that casting defects have a great in-fluence on the fatigue performance of alloy plates. The fatigue life of alloy plate with casting defects is less than 30 000 cycles, while the fatigue life of alloy plate without free casting defects reaches 71 000 cycles. After TIG welding repair of the defective specimens, the fatigue life of the specimen reaches 60 000 to 90 000 cycles, which is close to or even exceeding the fatigue life of the samples without defects. This shows that suitable welding repair method will not reduce the fatigue performance of K4169 superalloy. The reason for the high fatigue life of castings after welding repair is that the number of coarser phases precipitated in the weld is large and evenly distributed, and more secondary cracks are gene-rated during the fatigue crack propagation process, which leads to crack offset and growth path growth.
Key words:  K4169 superalloy    welding repair    fatigue life    secondary cracks
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  TB31  
基金资助: 国家自然科学基金项目(51971142);航空科学基金项目(2018ZE57012)
通讯作者:  xzx@hbut.edu.cn   
作者简介:  许章华,2018年6月毕业于湖北工业大学,获得工学学士学位。现为湖北工业大学材料与化学工程学院硕士研究生,在谢志雄老师的指导下进行研究。目前的主要研究领域为焊接修复高温合金的疲劳性能、深冷处理对不锈钢焊接接头影响的研究。
谢志雄,工学博士,硕士研究生导师,湖北工业大学材料成型及控制工程系副主任,2012 年6 月于上海交通大学材料加工工程专业获工学博士学位,迄今发表论文20 余篇,其中SCI/EI 收录论文15 余篇,主持和参与湖北省自然科学基金项目、国家自然科学基金项目,获湖北省科技进步奖三等奖和湖北省自然科学三等奖各1 项,主要从事高强高导铜合金的制备、组织、性能和强化机理,产氢铝合金的制备,产氢机理方面,超薄壁钛管、不锈钢管高频焊接研究.
引用本文:    
许章华, 谢志雄, 康茂东, 王俊, 董仕节, 彭志贤, 刘静. K4169高温合金铸件铸造缺陷修复及疲劳性能研究[J]. 材料导报, 2021, 35(22): 22115-22120.
XU Zhanghua, XIE Zhixiong, KANG Maodong, WANG Jun, DONG Shijie, PENG Zhixian, LIU Jing. Study of Casting Defect Repair and Fatigue Performance of K4169 Superalloy Casting. Materials Reports, 2021, 35(22): 22115-22120.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090159  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22115
1 Wang W. Technology Innovation and Application, 2020(16), 139(in Chinese).
王威.科技创新与应用, 2020(16), 139.
2 Zhang X Y, Liu F L, Liu Y J, et al. Journal of Chengdu University(Na-tural Science), 2020, 39(2), 113(in Chinese).
张心怡,刘福林,刘永杰,等.成都大学学报(自然科学版), 2020, 39(2), 113.
3 Ji G S, Yang Y L, Kou S Z. Journal of Lanzhou University of Technology, 2016, 42(3), 14(in Chinese).
季根顺,杨彦莉,寇生中.兰州理工大学学报, 2016, 42(3), 14.
4 Wang Y C, Li H B. Modern Metallurgy, 2018, 46(4), 1(in Chinese).
王颜臣,李华兵.现代冶金, 2018, 46(4), 1.
5 Guo J T.Acta Metallurgica Sinica, 2010, 46(11), 1303(in Chinese).
郭建亭.金属学报, 2010, 46(11), 1303.
6 Tang Z J, Guo T M, Kou S Z, et al. The Chinese Journal of Nonferrous Metals, 2015, 25(9), 2403(in Chinese).
唐中杰,郭铁明,寇生中,等. 中国有色金属学报, 2015, 25(9), 2403.
7 Zhang J, Jie Z Q, Huang T W, et al. Acta Metallurgica Sinica, 2019, 55(9), 1145(in Chinese).
张军,介子奇,黄太文, 等. 金属学报, 2019, 55(9), 1145.
8 Li X Q, Cheng Z, Qiu H, et al. Materials Reports, 2017, 31(S1), 541(in Chinese).
李小强,程准,邱昊, 等. 材料导报, 2017, 31(S1), 541.
9 Meng T L.Journal of Lanzhou Institute of Technology, 2016, 23(4), 71(in Chinese).
孟天利.兰州工业学院学报, 2016, 23(4), 71.
10 Pei H, Wen Z, Wang Z, et al. International Journal of Fatigue, 2020, 131, 105303.
11 Kang M D, Gao H Y, Wang J, et al. Journal of Shanghai Jiaotong University, 2012, 46(9), 1461(in Chinese).
康茂东,高海燕,王俊, 等. 上海交通大学学报, 2012, 46(9), 1461.
12 Kang M D, Wang J, Gao H Y, et al. In: Proceedings of the 13th National Foundry Annual Conference and 2016 China Foundry Week, Chengdu, 2016, pp.1(in Chinese).
康茂东,王俊,高海燕, 等. 第十三届全国铸造年会暨2016中国铸造活动周论文集, 成都, 2016, pp.1.
13 Gao S S, Qu S, Yang S, et al. Transactions of the China Welding Institution, 2016, 37(4), 95(in Chinese).
高双胜,曲伸,杨烁, 等. 焊接学报, 2016, 37(4), 95.
14 Tan X P, Zheng C H, Zhou X Y, et al. Special Casting & Nonferrous Alloys, 2018, 38(8), 880(in Chinese).
谭喜平,郑朝会,周喜艳, 等. 特种铸造及有色合金, 2018, 38(8), 880.
15 Pang K, Yuan H. International Journal of Fatigue, 2020, 136, 105575.
16 Zhang L N, Li J M, Ma F, et al. Aerospace Manufacturing Technology, 2012(2), 5(in Chinese).
张丽娜,李京民,马芳, 等. 航天制造技术, 2012(2), 5.
17 Zhang Z P, Li P R.Hangtian Gongyi, 2001(2), 32(in Chinese).
张中平,李平荣.航天工艺, 2001(2), 32.
18 Yan F, Wang C, Wang Y, et al. Materials Characterization, 2013, 78(4), 21.
19 Yan F, Liu S, Hu C, et al. Journal of Materials Processing Technology, 2017, 244, 44.
20 Ke H, Hou Q W, Lei S, et al. Vacuum, 2018, 157, 26.
21 Zerbst U, Madia M, Klinger C, et al. Engineering Failure Analysis, 2019, 97, 777.
22 Yang J, Zheng Q, Sun X, et al. Rare Metals, 2006, 25(3), 202.
[1] 张雷, 庄毅, 李姗姗, 唐毓婧, 李静, 罗欣. 不同工况下车用复合材料板簧的动态疲劳测试研究[J]. 材料导报, 2021, 35(z2): 583-588.
[2] 孙朋飞, 姚丹丹, 张鹏林, 王董琪琼, 侯嘉鹏, 王强, 张哲峰. 金属焊接接头疲劳寿命延长技术综述[J]. 材料导报, 2021, 35(9): 9059-9068.
[3] 龚园军, 张军, 毛江鸿, 金伟良, 谭昱, 罗林. 电化学修复后不同含氢钢筋的低周疲劳性能试验研究[J]. 材料导报, 2021, 35(6): 6146-6150.
[4] 喻宣瑞, 姚国文, 范伟庆. 交变荷载和氯盐环境作用下钢绞线的腐蚀疲劳性能研究[J]. 材料导报, 2021, 35(20): 20087-20091.
[5] 张喜军, 仝配配, 蔺习雄, 李剑新, 李波. 基于线性振幅扫描试验评价硬质沥青的疲劳性能[J]. 材料导报, 2021, 35(18): 18083-18089.
[6] 沙建芳, 夏中升, 刘建忠, 郭飞, 徐海源. 超高强水泥基灌浆材料疲劳性能研究综述[J]. 材料导报, 2021, 35(11): 11013-11026.
[7] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[8] 郝新超, 薛斌. 复合材料疲劳强度分布与疲劳验证载荷放大系数[J]. 材料导报, 2020, 34(Z2): 447-452.
[9] 高旭东, 邵永波, 谢丽媛, 杨冬平. X56海底管道在腐蚀环境下疲劳裂纹扩展过程预测[J]. 材料导报, 2020, 34(2): 2123-2130.
[10] 陈怡, 邹文兵, 郭龙涛, 杨春利. 铸造镁合金的焊接修复技术研究现状及发展方向[J]. 材料导报, 2020, 34(15): 15126-15131.
[11] 张明义, 袁帅, 钟敏, 柏劲松. 金属材料和结构的疲劳寿命预测概率模型及应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 808-814.
[12] 王志远, 邢志国, 王海斗, 李国禄, 刘珂璟, 邢壮. 重载齿轮弯曲疲劳寿命测试方法研究现状[J]. 材料导报, 2018, 32(17): 3051-3059.
[13] 赵清晨, 王金龙, 张元良, 沈毅鸿, 刘淑杰. 不同加载频率下FV520B-I的疲劳行为与疲劳寿命[J]. 材料导报, 2018, 32(16): 2837-2841.
[14] 孙志礼, 柴小冬, 柳溪溪, 王健. 基于损伤力学的疲劳裂纹萌生及扩展规律研究*[J]. CLDB, 2017, 31(8): 130-134.
[15] 赵伦, 何晓聪, 张先炼, 张龙, 高爱凤. 轻合金自冲铆微动磨损及疲劳性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 72-75.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed