Please wait a minute...
材料导报  2020, Vol. 34 Issue (15): 15126-15131    https://doi.org/10.11896/cldb.19050153
  金属及金属基复合材料 |
铸造镁合金的焊接修复技术研究现状及发展方向
陈怡1, 邹文兵2, 郭龙涛1, 杨春利1
1 哈尔滨工业大学先进焊接与连接国家重点实验室,哈尔滨 150001
2 上海航天精密机械研究所,上海 201600
A Review and Development Tendency of Welding Repair Technology for Cast Magnesium Alloy
CHEN Yi1, ZHOU Wenbing2, GUO Longtao1, YANG Chunli1
1 State Key Laboratory of Modern Welding Production Technology, Harbin Institute of Technology, Harbin 150001, China
2 Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China
下载:  全 文 ( PDF ) ( 3216KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁的密度为1.74 g/cm3,是铝密度的2/3,具有铸造性好、比强度高的特点,可以在减轻结构质量方面发挥重要作用,铸造镁合金被广泛应用于航空航天、汽车等领域的重要机械零件。尤其是在铸造镁合金中添加稀土元素,可进一步提升镁合金的室温强度和高温蠕变性能,以满足更多领域的应用需求,进一步扩大镁合金的应用。
镁合金在铸造过程中不可避免会产生铸造缺陷,为保障铸造镁合金构件的可靠性,针对铸造镁合金缺陷的焊接修复技术具有切实的工程意义。从铸造镁合金缺陷修复的实际需求出发,结合镁合金独特的物理特性及焊接性,国内外学者针对铸造镁合金缺陷的焊接修复技术展开了研究。
钨极氩弧焊具有成本低、操作简单、适用性强的特点,在铸造镁合金的焊接修复中应用最广,为保证焊接质量,需要从缓慢冷却、控制热输入等方面制定严格的焊接工艺;冷金属过渡焊接可实现焊接过程的精确控制,从而提高熔化极气体保护焊焊接镁合金的焊缝质量;激光焊具有能量密度高度集中的特点,获得的焊接接头具有较小的热影响区,但需制定合理的工艺参数以避免焊接缺陷的产生;搅拌摩擦焊可较好地完成铸造缺陷修复,但由于构件复杂结构的影响,在铸造镁合金焊接修复中的应用受限。另外,脉冲激光焊、电子束焊、钎焊、扩散焊及复合焊接方法均在镁合金的焊接中有所应用,但在铸造镁合金的焊接修复中尚未见实际应用。然而,由于铸造镁合金特殊的物理性质和焊接性,以及待修复构件的复杂结构,已进行的铸造镁合金缺陷焊接修复技术仍存在许多局限性,亦缺乏深入系统的理论研究。为了有效解决铸造镁合金的实际修复工程问题,无论是该类铸造镁合金焊接修复技术,还是关于修复技术的系统化研究,都需要大量的探索性工作。
本文简述了铸造镁合金的应用及其焊接性,重点介绍了钨极氩弧焊、冷金属过渡焊接、激光焊、搅拌摩擦焊在铸造镁合金焊接修复中的应用,讨论了目前铸造镁合金焊接修复技术存在的问题和未来的发展,为实现焊接修复区组织与性能更加可控的智能修复技术提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈怡
邹文兵
郭龙涛
杨春利
关键词:  镁合金  铸造缺陷  焊接修复    
Abstract: The density of magnesium is 1.74 g·cm-3, which is 2/3 of aluminum's density. Magnesium alloys with good castability and high specific strength play an important role in reducing structural weight. Therefore, cast magnesium alloys are widely used in aerospace and automobile. In particular, the addition of rare earth elements in cast magnesium alloys enhances the room temperature strength and the high temperature creeps properties of magnesium alloys, expanding the application of magnesium alloys.
However, some inevitable defects exist in casting magnesium alloys. In order to ensure the reliability of cast magnesium alloys components, welding repair technology for the defects of casting magnesium alloys has practical engineering significance. Considering the actual requirements of the repair of magnesium alloys defects, some researchers have studied the welding repair technology of cast magnesium alloys defects, combined with the unique physical properties and weldability of magnesium alloys.
Tungsten argon arc welding has the widest application in the welding repair of cast magnesium alloys because of the characteristics of low cost, easy operation, and good applicability. In order to ensure the welding quality, it is necessary to make strict welding process, such as cooling slowly and restricting the heat input. Cold metal transfer welding can achieve precise control of the welding process and improve the weld quality of the magnesium alloys welded by the gas shielded welding. Laser welding has high-density energy and smaller heat affected area, but it has requirement to develop a reasonable process to avoid welding defects. Friction stir welding can better complete the repair of casting defects, but it is li-mited in the welding repair of cast magnesium alloys for the complex structure of the components. Pulsed laser welding, electron beam welding, brazing, diffusion welding and hybrid welding technologies are applied in the welding of magnesium alloys, but have not yet been applied in the welding repair of casting magnesium alloys. Due to the special physical properties and weldability of cast magnesium alloys, as well as the complex structure of the components to be repaired, existing magnesium alloys defects welding repair technology has many limitations, deeper systematic theoretical research is still needed. In order to effectively solve the actual repair engineering problems of cast magnesium alloys, both the casting magnesium alloy welding repair technology and the systematic research on the repair technology require a lot of exploratory work.
This paper briefly describes the application and weldability of cast magnesium alloys, and introduces the application of tungsten argon arc wel-ding, cold metal transfer welding, laser welding and friction stir welding in the welding repair of cast magnesium alloys emphatically. Then it discusses the existing problems and the future development prospects, and provides a research reference for the realization of intelligent repair technology with better controllable organization and performance of the welding repair zone.
Key words:  magnesium alloys    casting defects    welding repair technology
               出版日期:  2020-08-10      发布日期:  2020-07-14
ZTFLH:  TG455  
基金资助: 国家自然科学基金(51975148)
通讯作者:  yangcl9@hit.edu.cn   
作者简介:  陈怡,现为哈尔滨工业大学材料学院博士研究生,在杨春利教授的指导下进行研究。已发表论文7篇,目前主要研究领域为高效化焊接方法,轻合金的电弧焊理论与工艺技术研究。
杨春利,工学博士,哈尔滨工业大学材料学院教授、博士研究生导师。从事焊接电弧与熔池的理论研究和电弧焊接工艺技术研究,以及焊接过程传感与质量控制研究。完成航天工业总公司科技攻关项目和兵器工业部科技攻关项目各1项,国家“九五”国防预研项目2项,黑龙江省留学回国基金项目1项,“十五”军工“863”重点项目1项、一般项目1项、“十五”总装备部预研项目1项,以及国防应用课题6项。出版专业教材1部,共发表学术论文40余篇。
引用本文:    
陈怡, 邹文兵, 郭龙涛, 杨春利. 铸造镁合金的焊接修复技术研究现状及发展方向[J]. 材料导报, 2020, 34(15): 15126-15131.
CHEN Yi, ZHOU Wenbing, GUO Longtao, YANG Chunli. A Review and Development Tendency of Welding Repair Technology for Cast Magnesium Alloy. Materials Reports, 2020, 34(15): 15126-15131.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050153  或          http://www.mater-rep.com/CN/Y2020/V34/I15/15126
1 Alizadeh R, Mahmudi R, Ngan A H W, et al. Journal of Materials Science, 2015, 50(14), 4940.2 Mo N,Tan Q, Bermingham M, et al. Materials & Design, 2018, 155,422.3 Pan J L. Electric Welding Machine, 2005(9), 1(in Chinese).潘际銮. 电焊机, 2005(9), 1.4 Kierzek A, Adamiec J.IOP Conference Series: Materials Science and Engineering, 2011, 22,12002.5 Yang M B, Liu J, Zhong L X, et al. Journal of Chongqing University of Technology(Natural Science), 2019, 33(2), 99(in Chinese).杨明波, 刘婧, 钟罗喜, 等. 重庆理工大学学报(自然科学), 2019, 33(2), 99.6 Liu H H, Ning Z L, Yi J Y, et al. Transactions of Nonferrous Metals So-ciety of China, 2017, 27(4), 797.7 Liu K, Zhang J, Sun W, et al. Journal of Materials Science, 2008, 44(1), 74.8 Ning Z L, Wang G J, Cao F Y, et al. Journal of Materials Science, 2009, 44(16), 4264.9 Pan F, Yang M, Chen X. Journal of Materials Science & Technology, 2016, 32(12), 1211.10 Adamiec J. Solid State Phenomena, 2011, 176, 99.11 Adamiec J. Materials Science Forum, 2011, 690, 41.12 Adamiec J. Solid State Phenomena, 2013, 197, 215.13 Song J, Pan F, Jiang B, et al. Journal of Magnesium and Alloys, 2016, 4(3), 151.14 He Q B, Du Q A, Li Z. Special Casting & Nonferrous Alloys, 2010, 30(11),1033 (in Chinese).何庆彪, 杜庆安, 李浈. 特种铸造及有色合金, 2010, 30(11), 1033.15 Cai S, Dong Y, Zhang X D, et al. Foundry, 2016, 65(9), 847(in Chinese).蔡森, 董宇, 张晓东, 等. 铸造, 2016, 65(9),847.16 Champagne V, Kaplowitz D, Champagne V K, et al. Materials and Manufacturing Processes, 2018, 33(2), 130.17 Kierzek A, Adamiec J. Solid State Phenomena, 2012, 191,183.18 Turowska A, Adamiec J, Rzychoń T. Archives of Metallurgy and Mate-rials, 2014, 59(2), 667.19 Kocurek R, Adamiec J. Solid State Phenomena, 2013, 212,81.20 Wang X, Yang C, Feng J C. Transactions of the China Welding Institution, 2010, 31(9), 33(in Chinese).王欣, 杨闯, 冯吉才. 焊接学报, 2010, 31(9),33.21 Yang H W, Wang Y S. Welding Technology, 2004, 33(4), 32(in Chinese).杨宏伟, 王雅生. 焊接技术, 2004, 33(4), 32.22 Cao X J, Xiao M, Jahazi M, et al. Trans Tech Publications Materials Science Forum, 2007, 539,1735.23 Zhang Z D, Cao A C, Liu J M, et al. Welding Technology, 2016, 45(12), 4(in Chinese)张兆栋, 曹爱崇, 刘嘉鸣, 等. 焊接技术, 2016, 45(12), 4.24 Zhang Z D, Yang J H, Song G, et al. Transactions of the China Welding Institution, 2017, 38(3), 87(in Chinese).张兆栋, 杨俊慧, 宋刚, 等. 焊接学报, 2017, 38(3), 87.25 Zhang H, Hu S, Wang Z, et al. Materials & Design, 2015, 86,894.26 Zhang H. Study on cladding of magnesium alloys employing cold metal transfer welding. Master's Thesis, Tianjin University, China, 2016 (in Chinese).张恒. 镁合金冷金属过渡电弧堆焊的研究.硕士学位论文, 天津大学, 2016.27 Qu H T, Shen J Q, Bu X Z, et al. Aerospace Manufacturing Technology, 2017(1), 34(in Chinese).曲宏韬, 申俊琦, 步贤政, 等. 航天制造技术, 2017(1),34.28 Chen H, Li Z G, Yao C W, et al. Chinese Journal of Lasers, 2015, 42(2),80(in Chinese).陈宏, 李铸国, 姚成武, 等. 中国激光, 2015, 42(2), 80.29 Ni J M, Yang X Q, Xu A J, et al. Electric Welding Machine, 2015, 45(5),150(in Chinese).倪加明, 杨学勤, 徐爱杰, 等. 电焊机, 2015, 45(5), 150.30 Cao X, Xiao M, Jahazi M, et al. Materials and Manufacturing Processes, 2005, 20(6), 987.31 Cao X, Jahazi M, Immarigeon J P, et al. Journal of Materials Processing Technology, 2006, 171(2),188.32 Li Y J, Qin F M, Liu C R, et al. Metals, 2017, 7,524.33 Wang X, Meng S, Kang X, et al. Spacecraft Engineering, 2010, 19(1), 89(in Chinese).王鑫, 孟松, 康旭, 等. 航天器工程, 2010, 19(1),89.34 Ji S, Meng X, Zeng Y, et al. Materials & Design, 2016, 97,175.35 Huang R, Ji S, Meng X, et al. Journal of Materials Processing Technology, 2018, 255,765.36 You G Q, Zhang J C, Chen Y, et al. Hot Working Technology, 2011, 40(13),99(in Chinese).游国强, 张均成, 陈勇, 等. 热加工工艺, 2011, 40(13), 99.37 Chen L X, Liu Y, Liu Z Y, et al. Transactions of Materials and Heat Treatment, 2014, 35(9),95(in Chinese).陈连喜, 刘英, 刘中益, 等. 材料热处理学报, 2014, 35(9),95.38 Li Z J, Wang H Y. Transactions of the China Welding Institution, 2012, 33(8), 69(in Chinese).李志军, 王红英. 焊接学报, 2012, 33(8), 69.39 Chi C T , Chao C G. Journal of Materials Processing Technology, 2007, 182(1-3),369.40 Tan B, Wang Y Q, Chen D G, et al. Transactions of the China Welding Institution, 2008, 29(9),75(in Chinese).谭兵, 王有祁, 陈东高, 等.焊接学报, 2008, 29(9),75.41 Draugelates U, Bouaifi B, Bartzsch J, et al. Welding and Cutting, 2000, 52(4), 62.42 Feng J C, Wang Y R, Zhang Z D. The Chinese Journal of Nonferrous Metals, 2005(2),165(in Chinese).冯吉才, 王亚荣, 张忠典. 中国有色金属学报, 2005(2),165.43 Ma L, Long W M, Pei Y Y, et al. Welding & Joining, 2015(5),30(in Chinese).马力, 龙伟民, 裴夤崟等. 焊接, 2015(5),30.44 Zhang C, Jin G S. Hot Working Technology, 2009, 48(5),22(in Chinese).张超, 靳广胜. 热加工工艺, 2009, 48(5),22.45 Xu X, Jin G S, Liu Y. Hot Working Technology, 2019, 48(3),83(in Chinese).许欣, 靳广胜, 刘颖. 热加工工艺, 2019, 48(3),83.46 Lin F, Sun L L, Meng Q S. Welding Technology, 2012, 41(12),19(in Chinese).林飞, 孙路路, 孟庆森. 焊接技术, 2012, 41(12),19.47 Lin F, Tian Y X, Li Q S, et al. Hot Working Technology, 2016, 45(21), 180(in Chinese).林飞, 田雅馨, 李仟姗, 等. 热加工工艺, 2016(21),180.48 Liu F J, Du Z L, Chen S P, et al. Ordnance Material Science and Engineering, 2009, 32(5), 18(in Chinese).刘奋军, 杜正良, 陈少平, 等. 兵器材料科学与工程, 2009, 32(5), 18.49 Du Z L, Liu F J, Chen S P, et al. Transactions of Materials and Heat Treatment, 2010, 31(3),102(in Chinese).杜正良, 刘奋军, 陈少平, 等. 材料热处理学报, 2010, 31(3),102.50 Meng Q S, Chen S P, Liu F J, et al. Rare Metal Materials and Enginee-ring, 2009, 38(3),191(in Chinese).孟庆森,陈少平,刘奋军,等. 稀有金属材料与工程, 2009, 38(3),191.51 Tan B, Chen D G, Gao M, et al. Journal of Aeronautical Materials, 2008, 28(6),36(in Chinese).谭兵, 陈东高, 高明, 等. 航空材料学报, 2008, 28(6),36.52 Gao M, Zhang L, Lin T X, et al. Hot Working Technology, 2011, 40(21),103(in Chinese).高明, 张林, 林天晓, 等. 热加工工艺, 2011, 40(21),103.53 Song G, Liu L M, Wang J F, et al. Transactions of the China Welding Institution, 2004, 25(3),31(in Chinese).宋刚, 刘黎明, 王继锋, 等.焊接学报, 2004, 25(3),31.54 Hao X F, Liu L M, Li C M. Transactions of the China Welding Institution, 2007, 28(5),77 (in Chinese).郝新锋, 刘黎明, 李长茂. 焊接学报, 2007, 28(5),77.
[1] 刘江林, 齐艳阳, 王涛, 王跃林, 任忠凯, 韩建超. 镁合金板材轧制成形边裂的研究进展[J]. 材料导报, 2020, 34(7): 7138-7145.
[2] 余东海, 熊开琴, 黄楠. 等离子体聚合聚环氧乙烷类涂层用于提高镁合金心血管支架抗腐蚀性能[J]. 材料导报, 2020, 34(6): 6166-6171.
[3] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[4] 雷意, 严红革, 陈吉华, 夏伟军, 苏斌, 丁天, 黄文森. 温度对ZK60镁合金细晶板材成形性能的影响[J]. 材料导报, 2020, 34(2): 2067-2071.
[5] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[6] 黄晓锋, 魏浪浪, 杨剑桥, 张乔乔, 尚文涛, 李旭娇. 半固态等温热处理对Mg-7Zn-1Cu-0.3V镁合金非枝晶组织的影响[J]. 材料导报, 2020, 34(14): 14116-14121.
[7] 谢誉璐, 黄光胜, 刘帅帅, 张军磊, 潘复生. 微量Ca元素对AZ31镁合金热变形行为的影响[J]. 材料导报, 2020, 34(12): 12070-12075.
[8] 热焱, 邱克强, 李东和, 丁韧, 王梅, 徐慧, 徐颖. 高硬度Mg-5Al-2Sn-5Ca镁合金在铸态与热处理后的蠕变行为[J]. 材料导报, 2020, 34(12): 12076-12082.
[9] 李萧, 胡水平, 韩天棋. Nd、Y对AZ31镁合金热轧退火薄板耐蚀性的影响[J]. 材料导报, 2020, 34(10): 10088-10092.
[10] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[11] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[12] 彭鹏, 汤爱涛, 佘加, 周世博, 潘复生. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33(9): 1526-1534.
[13] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[14] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[15] 姚天宇, 杨海燕, 周素洪, 叶兵, 蒋海燕. 镁合金表面电沉积铝工艺的研究进展[J]. 材料导报, 2019, 33(3): 470-478.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed