Please wait a minute...
材料导报  2020, Vol. 34 Issue (15): 15132-15137    https://doi.org/10.11896/cldb.19050077
  金属及金属基复合材料 |
TC4合金激光熔覆材料的研究现状
谭金花1, 孙荣禄1,2, 牛伟1,2, 刘亚楠1, 郝文俊1
1 天津工业大学机械工程学院,天津 300387
2 天津市现代机电装备技术重点实验室,天津 300387
Research Status of TC4 Alloy Laser Cladding Materials
TAN Jinhua1, SUN Ronglu1,2, NIU Wei1,2, LIU Yanan1, HAO Wenjun1
1 School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
2 Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology,Tianjin 300387, China
下载:  全 文 ( PDF ) ( 2297KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 TC4合金属于(α+β)双相合金,具有密度小、比强度高、耐高温、耐腐蚀、无磁、相容性好等优点,被广泛应用于航空航天领域。但是TC4合金硬度低、耐磨性差的缺点在很大程度上限制了其应用与推广,因此对TC4合金进行表面改性具有重要意义。
激光熔覆是新型的表面改性技术,由于其具有可加工材料广泛、效率高、熔覆层与基体相容性好、节省材料、环保、无污染等优点,在TC4合金表面改性领域获得了广泛的应用。利用激光熔覆技术对TC4合金进行表面改性始于20世纪80年代,经过近40年的探索,学者们发现影响熔覆层质量与性能的因素有激光熔覆材料、激光工艺参数以及工艺处理条件等。在考察各种因素对熔覆层的影响后发现,激光熔覆材料对熔覆层的质量与性能起到决定性作用。
根据材料成分构成可以将熔覆材料分为金属及金属合金粉末、陶瓷粉末、纳米陶瓷粉末、金属-陶瓷复合粉末及其他粉末。其中,金属及其合金具有极高的硬度,但是不耐高温,适合在400~900 ℃下使用。陶瓷材料具有高硬度、高熔点等特点,在激光熔覆过程中可以作为增强相使用,但是其韧性低,易产生裂纹,而纳米陶瓷材料可有效缓解界面应力集中,减少熔覆层中的裂纹、气孔等缺陷。金属-陶瓷复合材料可以借助激光熔覆技术将金属的强韧性和陶瓷材料的耐磨、耐高温性结合起来,是目前激光熔覆领域的研究热点。其他熔覆材料如稀土及其氧化物粉末、固体润滑剂粉末、包覆型粉末等具有特定的性能,在熔覆粉末中添加少量此类粉末可以显著改善其熔覆层性能。
本文概述了近年来学者通过改变熔覆粉末成分来改善TC4合金表面性能的研究成果,对熔覆粉末进行了分类,介绍了各类粉末的优缺点和应用场合,指出了TC4合金表面改性存在的主要问题(开裂问题),分析了裂纹产生的原因并提出了相应的解决方案。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭金花
孙荣禄
牛伟
刘亚楠
郝文俊
关键词:  TC4钛合金  激光熔覆  熔覆材料  耐磨性    
Abstract: TC4 alloy belongs to (α+β) dual-phase alloy, it is widely used in the field of aerospace because of its advantages such as small density, high specific strength, high temperature resistance, corrosion resistance, non-magnetic and good compatibility. However, the low hardness and poor wear resistance of TC4 alloy limit its application and promotion to a large extent. So it is of great significance to modify the surface of TC4 alloy.
Laser cladding technology is a new surface modification technology and it has been widely used in the field of surface modification of TC4 alloy due to its advantages in processable materials, high efficiency, good compatibility between cladding layer and substrate, material saving, environmental protection and pollution-free. Surface modification of TC4 titanium alloy by laser cladding technology began in 1980s. After nearly 40 years of research and exploration, researchers found that the factors affecting the quality and properties of the cladding layer were laser cladding materials, laser processing parameters and processing conditions.After considering the influence of various factors on the cladding layer, it is found that the laser cladding material plays a decisive role in the quality and performance of the cladding layer.
According to the composition of materials, cladding materials can be classified into metal and metal alloy powder, ceramic powder, nano-ceramic powder, metal-ceramic composite powder and other powders. Among them, metals and their alloys have very high hardness, but they are not resistant to high temperature, so they are suitable for using at temperatures of 400 —900 ℃. Ceramic materials have high hardness and high melting point. They can be used as reinforcing phase in laser cladding process, but their toughness is low and cracks are easy to occur. Nano-ceramic materials can effectively alleviate the stress concentration at the interface and reduce the cracks and pore defects in the cladding layer. Cermet composites can combine the strength and toughness of metals with the wear resistance and high temperature resistance of ceramics by laser cladding technology, which is a research hotspot in the field of laser cladding at present. Other cladding materials, such as rare earth and its oxide powder, solid lubricant powder and coated powder have specific properties, and the properties of cladding layer can be significantly improved by adding a small amount of such powder into the cladding powder.
This paper summarizes the research results of improving the surface properties of TC4 alloy by changing the composition of cladding powder.The classification of cladding powders is introduced.The advantages, disadvantages and application occasions of various powders are introduced. It is pointed out that the main problem of surface modification of TC4 alloy is the cracking of cladding layer. The causes of cracking are analyzed and the corresponding solutions are put forward.
Key words:  TC4 titanium alloy    laser cladding    cladding material    wear resistance
               出版日期:  2020-08-10      发布日期:  2020-07-14
ZTFLH:  TG174  
基金资助: 国家自然科学基金(51371125)
通讯作者:  rlsun@tjpu.edu.cn   
作者简介:  谭金花,现为天津工业大学机械工程学院硕士,在孙荣禄教授的指导下进行研究。主要研究方向为金属材料表面强化和激光材料加工。
孙荣禄,天津工业大学教授,博士研究生导师,天津市金工学会副理事长,天津市热处理学会理事,中国机械工程学会失效分析分会专家,中国机械工程学会高级会员。1996年获哈尔滨工业大学材料加工工程专业工学硕士学位;2001年获哈尔滨工业大学材料学工学博士学位;2003年至2005年在天津大学从事博士后研究工作。2002年调入天津工业大学机械电子学院工作。1997年晋升为副教授,2003年晋升为教授,2006年被聘为博士研究生导师。孙荣禄教授主要从事金属材料表面强化和激光材料加工方面的教学和科研工作。先后主持和参加完成了天津市自然科学基金项目、航天基金项目和武器装备预研项目等多项省部级和企业委托项目。所承担的“激光快速凝固TiC-Ni复合涂层的微观结构和耐磨性能研究”获2005年度天津市自然科学奖,申请国家发明专利两项。孙荣禄教授先后在Surface and Coating Technology、Transactions of Nonferrous Metals Society of China、《中国激光》《摩擦学报》《硅酸盐学报》《材料热处理学报》《焊接学报》《稀有金属材料与工程》等国内外专业学术期刊上发表学术论文50余篇,其中30余篇被SCI和EI收录。
引用本文:    
谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. TC4合金激光熔覆材料的研究现状[J]. 材料导报, 2020, 34(15): 15132-15137.
TAN Jinhua, SUN Ronglu, NIU Wei, LIU Yanan, HAO Wenjun. Research Status of TC4 Alloy Laser Cladding Materials. Materials Reports, 2020, 34(15): 15132-15137.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050077  或          http://www.mater-rep.com/CN/Y2020/V34/I15/15132
1 Boyer R R.Materials Science & Engineering, 1996, 213, 103.2 Gao J, Yao L.World Nonferrous Metals, 2001(2), 4(in Chinese).高敬, 姚丽. 世界有色金属, 2001(2), 4.3 Jiang J B, Lian G F, Xu M S.Journal of Chongqing University of Techno-logy, 2015, 29(1), 27(in Chinese).江吉彬, 练国富, 许明三. 重庆理工大学学报, 2015, 29(1), 27.4 Niu W, Sun R L, Lei Y W, et al.Chinese Journal of Lasers, 2008,11, 1756.5 Huang G, Su Y, Duan Z Y, et al.Shanghai Metals, 2013, 35(2), 22(in Chinese).黄果, 苏钰, 段志宇, 等.上海金属, 2013, 35(2), 22.6 Yu P C, Liu X B, Lu X L, et al.Tribology, 2015, 35(6), 737(in Chinese).余鹏程, 刘秀波, 陆小龙, 等.摩擦学学报, 2015, 35(6), 737. 7 Xu R H, Li X F, Zuo D W, et al.Chinese Journal of Rare Metals, 2014, 38(5), 807(in Chinese).许瑞华, 黎向锋, 左敦稳, 等.稀有金属, 2014, 38(5), 807. 8 Xu Q, Zhang X H, Qu W, et al.Cemented Carbide, 2002(4), 221(in Chinese).徐强, 张幸红, 曲伟, 等.硬质合金, 2002(4), 221.9 Zhang S, Zhang C H, Kang Y P, et al.The Chinese Journal of Nonferrous Metals, 2001(6), 1026(in Chinese).张松, 张春华, 康煜平, 等.中国有色金属学报, 2001(6), 1026.10 Wang P, Ye Y S.Surface Technology, 2015, 44(8), 44(in Chinese).王培, 叶源盛.表面技术, 2015, 44(8), 44.11 Zhang Z T, Lin Y H, Tang Z L, et al.Journal of Materials Engineering, 2000(3), 42(in Chinese).张中太, 林元华, 唐子龙, 等.材料工程, 2000(3), 42.12 Zhang L D.China Powder Science and Technology, 2000(1), 1(in Chinese).张立德.中国粉体技术, 2000(1), 1.13 Wang H Y, Sun C C, Jin J, et al. Rare Metal Materials and Enginee-ring, 2015, 44(10), 2549(in Chinese).王宏宇, 孙崇超, 金镜, 等.稀有金属材料与工程, 2015, 44(10), 2549.14 Liu D, Chen Z Y, Chen K P, et al.Heat Treatment of Metals, 2015, 40(3), 58(in Chinese).刘丹, 陈志勇, 陈科培, 等.金属热处理, 2015, 40(3), 58. 15 Li H C, Wang D G, Chen C Z, et al.Colloids and Surface B: Biointerfa-ces, 2015, 127, 15.16 Kooi B J, Wouters O, Hosson J, et al.Acta Materialia, 2003, 51(3), 831.17 Wu W L, Li X W, Liu W H, et al.Rare Metal Materials and Enginee-ring, 2006(9), 1363 (in Chinese).武万良, 李学伟, 刘万辉, 等.稀有金属材料与工程, 2006(9), 1363.18 Sun R L, Yang X J.Optical Technique, 2006(2), 287(in Chinese).孙荣禄, 杨贤金.光学技术,2006(2),287.19 Yang G, Wang W, Liu W J, et al. Journal of Shenyang University of Technology, 2011, 33(3), 259 (in Chinese).杨光, 王维, 刘伟军, 等.沈阳工业大学学报, 2011, 33(3), 259. 20 Qiao S J, Liu X B, Zai Y J, et al.Applied Laser, 2015, 35(6), 623(in Chinese).乔世杰, 刘秀波, 翟永杰, 等.应用激光, 2015, 35(6), 623.21 Meng X J, Liu X B, Liu H Q, et al.Transactions of the China Welding Institution, 2015, 36(5), 59(in Chinese).孟祥军, 刘秀波, 刘海青, 等.焊接学报, 2015, 36(5), 59.22 Sun R L, Niu W, Wang C Y.Rare Metal Materials and Engineering, 2007(1), 7 (in Chinese).孙荣禄, 牛伟, 王成扬.稀有金属材料与工程, 2007(1), 7.23 Fan H M, Liu H Q, Meng X J, et al.Materials Review A: Research Papers, 2013, 27(12), 102 (in Chinese).范红梅, 刘海青, 孟祥军, 等.材料导报:研究篇, 2013, 27(12), 102.24 Li C Y, Kou S Z, Zhao Y C, et al.Journal of Functional Materials, 2015, 46(7),7025(in Chinese).李春燕, 寇生中, 赵燕春, 等.功能材料, 2015, 46(7), 7025.25 Fang Z J, Wu W X, Hou W B.Science & Technology Information, 2013(6), 157 (in Chinese).方正极, 吴文秀, 侯文斌.科技信息, 2013(6), 157.26 Liu M K, Tang H B, Fang Y L, et al.Laser Technology, 2011, 35(4), 444(in Chinese).刘铭坤, 汤海波, 方艳丽, 等.激光技术, 2011, 35(4), 444.27 Li J N, Gong S L, Shan F H, et al.Aeronautical Manufacturing Technology, 2013(16), 76(in Chinese).李嘉宁, 巩水利, 单飞虎, 等.航空制造技术, 2013(16), 76.28 Liu H, Zhang X, Jiang Y, et al.Journal of Alloys and Compounds, 2015,670, 268.29 He X H, Xu X J, Ge X L, et al. Rare Metal Materials and Engineering, 2017, 46(4), 1074(in Chinese).何星华, 许晓静, 戈晓岚, 等.稀有金属材料与工程, 2017, 46(4), 1074. 30 Ma Y, Zhu H M, Sun C G, et al.Surface Technology, 2017, 46(6), 238(in Chinese).马永, 朱红梅, 孙楚光, 等.表面技术, 2017, 46(6), 238.31 Zhu K L, Zhang Y F, He L, et al.Surface Technology, 2016, 45(4), 53(in Chinese).朱快乐, 张有凤, 何力, 等.表面技术, 2016, 45(4),53. 32 Sun R L, Sun S W, Guo L X, et al.Aerospace Materials & Technology, 1999(1), 17 (in Chinese).孙荣禄, 孙树文, 郭立新, 等.宇航材料工艺, 1999(1), 17.33 Gao Q S, Yan H, Qin Y, et al.Chinese Journal of Materials Research, 2018, 32(12), 921(in Chinese).高秋实, 闫华, 秦阳, 等.材料研究学报, 2018, 32(12), 921.34 Luo J, Liu X B, Xiang Z F, et al.Materials Protection, 2015, 48(5), 13(in Chinese).罗健, 刘秀波, 相占凤, 等.材料保护, 2015, 48(5), 13. 35 Shi G L, Wu S H, Liu H Q, et al.Hot Working Technology, 2014, 43(24), 143(in Chinese).石皋莲, 吴少华, 刘海青, 等.热加工工艺, 2014, 43(24), 143. 36 Lin X, Sun R L, Niu W.Heat Treatment of Metals, 2018, 43(7), 197(in Chinese).林熙, 孙荣禄, 牛伟.金属热处理, 2018, 43(7), 197.37 Sun R L, Niu W, Li T, et al.Spacecraft Environment Engineering, 2017, 34(5), 533 (in Chinese).孙荣禄, 牛伟, 李涛, 等.航天器环境工程, 2017, 34(5), 533. 38 Zhu B L, Hu M L, Chen L, et al.Heat Treatment of Metals, 2000(7), 1(in Chinese).祝柏林, 胡木林, 陈俐, 等.金属热处理, 2000(7), 1.39 Li C Y, Zhang S, Kang Y P, et al.Laser Journal, 2002(3), 5 (in Chinese).李春彦, 张松, 康煜平, 等.激光杂志, 2002(3), 5.40 Li R G.Ceramic-metal composite material, Metallurgical Industry Press, China, 2004 (in Chinese).李荣久. 陶瓷-金属复合材料, 冶金工业出版社, 2004.41 Zhao Y F, Chen C Z.Laser Technology, 2006(1), 16 (in Chinese).赵亚凡, 陈传忠.激光技术, 2006(1), 16.42 Fu G Y, Liu Y L, Shi S H.Optical Technique, 2000(1), 84 (in Chinese).傅戈雁, 刘义伦, 石世宏.光学技术, 2000(1), 84.43 Wu X, Zeng X, Zhu B.Chinese Journal of Lasers, 1997, 24, 570. 44 Grezev A N, Safonov A N.Welding International, 1987,1,50.45 Liu Y N, Sun R L, Niu W, et al.Optics and Lasers in Engineering, 2019,120, 84.
[1] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[2] 蒋三生, 梁立帅, 舒凤远. 45钢表面激光熔覆Co基合金覆层工艺优化[J]. 材料导报, 2020, 34(Z1): 448-451.
[3] 魏仕勇, 彭文屹, 陈斌, 赵文超, 周颖钰, 邓晓华. 等离子弧粉末堆焊熔覆材料的研究现状与进展[J]. 材料导报, 2020, 34(9): 9143-9151.
[4] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报, 2020, 34(12): 12094-12100.
[5] 施佳鑫, 朱卫华, 朱红梅, 陈志勇, 刘晋京, 史新灵, 王新林. CaB6对激光熔覆生物陶瓷涂层组织和生物学性能的影响[J]. 材料导报, 2020, 34(10): 10030-10034.
[6] 宋涛, 杨杰, 赵松海, 尚海涛, 白超超. 石膏基自流平砂浆耐磨性能研究[J]. 材料导报, 2019, 33(Z2): 239-241.
[7] 肖忆楠, 乔岩欣, 李月明, 盛立远, 赖琛, 奚廷斐. 医用钛及钛合金表面改性技术的研究进展[J]. 材料导报, 2019, 33(Z2): 336-342.
[8] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[9] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[10] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[11] 谢敏, 王梅丰, 戴晓琴, 雷剑波, 王春霞, 周圣丰. 综论偏晶合金的制备技术:外场下凝固、快速凝固及激光技术[J]. 材料导报, 2019, 33(3): 490-499.
[12] 范鹏飞,孙文磊,张冠,王恪典. 激光熔覆铁基合金梯度涂层的组织性能及应用[J]. 材料导报, 2019, 33(22): 3806-3810.
[13] 刘颖, 董丽虹, 王海斗. 激光熔覆成型的各向异性表征方法研究现状[J]. 材料导报, 2019, 33(21): 3541-3546.
[14] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[15] 徐子法, 焦俊科, 张正, 杨亚鹏, 张文武. 镍基高温合金激光修复工艺研究[J]. 材料导报, 2019, 33(19): 3196-3202.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed