Please wait a minute...
材料导报  2019, Vol. 33 Issue (21): 3541-3546    https://doi.org/10.11896/cldb.18080072
  材料与可持续发展(二)――材料绿色制造与加工* |
激光熔覆成型的各向异性表征方法研究现状
刘颖1, 董丽虹2, 王海斗2
1 中国地质大学(北京)工程技术学院,北京 100083
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
Research Progress on Anisotropic Characterization of Laser Cladding Molding
LIU Ying1, DONG Lihong2, WANG Haidou2
1 College of Engineering and Technological, China University of Geosciences (Beijing),Beijing 100083
2 National Defense Science and Technology Key Laboratory of Equipment Remanufacturing Technology, Academy of Army Armored Forces, Beijing 100072
下载:  全 文 ( PDF ) ( 7993KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 再制造技术是一项节能、绿色、环保的修复改造技术,作为制造产业链的延伸以及先进制造、绿色制造的重要组成技术,自进入人们的视野以来,在制备工艺和加工参数优化,尤其是在缺损零件的反求建模、成型评价、三维开发以及自动化等方面,短短几年内取得了众多的研究成果。增材制造技术中,激光熔覆成型技术将表面强化技术和激光快速原型制造技术相结合,因成型后的零件具有组织性能优良、柔性化程度高、应用材料种类广泛以及可制备复杂结构等优点,广泛应用于零件的再制造和修复。激光熔覆增材制造技术因能量密度高、焊接热影响区小、成型效率高等优点而成为目前应用最广泛的增材制造技术之一。
    激光熔覆再制造技术由于成型过程反复加热的特点形成“阶梯多层”的组织结构,导致成型件表现出力学、光学、磁学、热学和声学等的各向异性。通常可采用整体性能数据替代非均质组织的表征信息,影响该技术在工程中的应用与评价。激光熔覆组织的研究可以参考多层多道焊的研究。因此,近几年来除探索增材再制造工艺参数和性能评测外,零件的这种非均匀性逐渐引起重视,研究者正探索不同成型加工方向造成的材料微观结构的非均质带来的宏观性能上的差异。目前,可以明确得到不同成型方向上的硬度、弹性模量和抗拉强度等存在差异,零件性能的特殊要求可以以此为依据进行成型加工设计。
    研究者对激光熔覆增材制造组织的非均匀性的研究经历了横向各向同性、正交各向异性以及双向各向异性等过程。其中理想状态下的多层金属堆焊组织最早被视为均匀的层状横向各向同性介质,每个层内晶粒方向一致,晶粒方向急剧变化的区域层状介质划分比较密集;或者将焊缝以中心连续晶粒为基准,以熔合线为起点,以焊缝中心为终点进行划分;或者根据不同区域晶粒形貌和取向的差异进行标识和划分,将整个焊缝划分为七个区域等。
    本文简要介绍了焊接成型的各向异性研究发展进程,针对熔覆结构非均质的性能表征中的测量方法以及数值表征方法进行详述,指出未来针对各向异性的研究趋势,为后续研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘颖
董丽虹
王海斗
关键词:  激光熔覆  各向异性  再制造  组织性能  表征方法    
Abstract: Since remanufacturing technology as the continuity of the manufacturing industry appearing, it is the major part of rehabilitation technology of energy saving, environmental protection in advanced and green manufacturing, also the preparation process and processing parameters are optimized, especially in the parts of defect reverse modeling, 3D development, evaluation, and automation, etc., numerous research results have been achieved in just a few years.Laser cladding molding combines the technologies of surface modification and rapid prototyping manufacturing, has the characteristics such as better microstructure and properties,higher flexibility,wider applied category of processing materials and capable of forming complex components with optimized structures,therefore,it can be widely used in the manufacturing and repairing.Compared with traditional manufacturing technology, laser cladding additive manufacturing technology has become one of the most widely developed additive manufacturing technologies due to its advantages of high energy density, small welding heat affected area and high molding efficiency.
    The anisotropy of mechanics, optics, magnetism, heat and acoustics of the finished parts resulting from repeated heating in the forming process,forming "step and multi-layer" structure in laser cladding remanufacturing technology finished parts.The overall performance data is used to replace the characterization of heterogeneous structure, which affects its application and evaluation in engineering.The study of laser cladding microstructure can be referred to the study of multi-layer multi-pass welding.Therefore, in addition to exploring the process parameters and performance evaluation of additive remanufacturing, the inhomogeneity of parts has gradually attracted the researches's attention.The differences in macroscopic properties caused by the inhomogeneity of material microstructure and different molding directions have explored in recent years.It is clear that there are differences in hardness, elastic modulus and tensile strength in different molding directions, and the special requirements of part performance can be used as the basis for molding processing design.
    The heterogeneity of laser cladding structure has been studied by means of transverse anisotropy, orthogonal anisotropy and bidirectional anisotropy. The microstructure of multilayer metal surfacing was regarded as layered homogeneous transverse isotropic medium firstly, the direction of grains was consistent in each layer. The stratified medium was relatively dense in the region where the direction of grains changed sharply.Or the weld is divided based on the central continuous grain, the fusion line as the starting point, and the center of the weld as the end point; or the whole weld was divided into seven regions according to the differences of grain morphology and orientation in different regions.
    This paper briefly introduces the development process in anisotropic welding, also focus on heterogeneity about the measuring and numerical representation in characterization methods in detail.Furthermore,indicate the trend of anisotropy, which aims to provide reference for the initial research of anisotropy.
Key words:  laser cladding    anisotropy    remanufacturing    grain property    characterization methods
               出版日期:  2019-11-10      发布日期:  2019-09-12
ZTFLH:  TG174  
基金资助: 国家自然科学基金(51535011;51675532)
作者简介:  刘颖,2016年6月毕业于吉林大学,获得工学学士学位。现为中国地质大学(北京)硕士研究生,在王海斗教授的指导下进行研究。目前主要研究领域为再制造零件无损检测中的超声检测。
    王海斗,陆军装甲兵学院装备再制造技术国防科技重点实验室常务副主任,教授、博士研究生导师,主要从事再制造工程、表面工程研究。第十三届全国人大代表,国防973计划首席科学家,国家杰出青年科学基金获得者;当选国家“万人计划”科技领军人才,国家“创新人才推进计划”中青年科技领军人才,军队高层次人才工程科技领军人才,北京市科技领军人才;入选国家百千万人才工程并被表彰为国家有突出贡献中青年专家;获国家“求是”杰出青年奖及原总装备部“科技创新贡献奖”。
引用本文:    
刘颖, 董丽虹, 王海斗. 激光熔覆成型的各向异性表征方法研究现状[J]. 材料导报, 2019, 33(21): 3541-3546.
LIU Ying, DONG Lihong, WANG Haidou. Research Progress on Anisotropic Characterization of Laser Cladding Molding. Materials Reports, 2019, 33(21): 3541-3546.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18080072  或          http://www.mater-rep.com/CN/Y2019/V33/I21/3541
1 Xu B S.Theory and technology of equipment remanufacturing Engineering, National Defense Industry Press, China, 2007(in Chinese).
徐滨士.装备再制造工程的理论与技术, 国防工业出版社,2007.
2 Xu B S.Metal Heat Treatment, 2008, 33(1),9(in Chinese).
徐滨士. 金属热处理, 2008, 33(1), 9.
3 Chen L,Tao R, Lou D Y,et al. Advances in Laser and Optoelectronics, 2014, 51(10),104(in Chinese).
陈列,陶然,娄德元,等.激光与光电子学进展,2014,51(10),110.
4 Li P F, Sun W L, Huang Y,et al. Heat Processing Technology, 2016,45(24),7(in Chinese).
李朋飞,孙文磊,黄勇,等.热加工工艺,2016,45(24),7.
5 Gao M Y. Experimental study on rapid prototyping of titanium matrix composites based on single-channel laser cladding.Master's Thesis, Northeas-tern University,China,2009(in Chinese).
高明媛. 基于单道激光熔覆的钛基复合材料快速成形试验研究. 硕士学位论文,东北大学,2009.
6 Jiang J B, Lian G F, Xu M S.Journal of Chongqing Institute of Technology(Natural Science), 2015, 29(1),27(in Chinese).
江吉彬,练国富,许明三.重庆理工大学学报(自然科学),2015,29(1),27.
7 Hu M L, Xie C S, Zhu B L,et al.Journal of Materials Heat Treatment, 2001, 22(2),23(in Chinese).
胡木林,谢长生,祝柏林,等.金属热处理学报,2001, 22(2),23.
8 Zhang Y C. Study on the composition segregation and strengthening mecha-nism of laser cladding INCONEL 718 alloy coating.Master's Thesis,Shanghai Jiao Tong University, China,2013(in Chinese).
张尧成. 激光熔覆INCONEL 718合金涂层的成分偏聚与强化机理研究. 硕士学位论文,上海交通大学,2013.
9 Guo Y L, Liang G Y, Li L.China Laser, 2008, 35(2),303 (in Chinese).
郭永利, 梁工英, 李路. 中国激光, 2008, 35(2),303.
10 Chen Y, Luo Z, Zhou Q, et al.Ultrasonics, 2015, 59,31.
11 Gäumann M, Henry S, Cléton F, et al.Materials Science & Engineering A, 1999, 271(1-2),232.
12 Dinda G P, Dasgupta A K, Mazumder J.Surface & Coatings Technology, 2012, 206(8-9),2152.
13 Zhang K, Wang S, Liu W, et al.Materials & Design, 2014, 55(6),104.
14 Song B, Dong S, Coddet P, et al.Materials & Design, 2014, 53(1),1.
15 Tabernero I, Lamikiz A, Martínez S, et al.International Journal of Machine Tools & Manufacture, 2011, 51(6),465.
16 Mertens A, Contrepois Q, Dormal T, et al. In:European Conference on Space Structures, Materials and Environmental Testing. Toulouse, 2012.
17 Mertens A, Reginster S, Contrepois Q, et al.Materials Science Forum, 2014,783-786, 898.
18 Carroll B E, Palmer T A, Beese A M.Acta Materialia, 2015, 87,309.
19 Hanzl P, Zetek M, Bakša T, et al. Procedia Engineering, 2015, 100,1405.
20 Chen T R. Study on ultrasonic measurement technology of residual stress in welded joint.Master's Thesis, East China University of Technology, China,2014(in Chinese).
陈天瑞. 焊接接头残余应力的超声测量技术研究. 硕士学位论文,华东理工大学, 2014.
21 Xu W F. Deformation and damage behavior of 6063 aluminum alloy T-welded joints.Master's Thesis, Lanzhou Polytechnic University, China,2009(in Chinese).
徐文福. 6063铝合金T型焊接接头的变形及损伤行为. 硕士学位论文,兰州理工大学, 2009.
22 Wang W D. Study on heat treatment technology of laser deposition TA15.Master's Thesis,Shenyang Aerospace University,China, 2017(in Chinese).
王文东. 激光沉积TA15热处理工艺研究. 硕士学位论文,沈阳航空航天大学, 2017.
23 Wang B. Study on mechanical properties of Ni-base and co based superalloy in H13 steel.Master's Thesis, Yanshan University, China,2016(in Chinese).
王宾. H13钢激光熔覆Ni基和Co基高温合金的力学性能研究. 硕士学位论文,燕山大学, 2016.
24 Xu J, Li Z, Zhu W, et al.Materials Science & Engineering A, 2007, 447(1-2),307.
25 Chen C S, Liu C P, Tsao C.Thin Solid Films, 2005, 479(1),130.
26 Dong D Y, Liu C S, Chen S Y, et al.International Journal of Minerals Metallurgy and Materials, 2009, 16(2),208.
27 Lu D B, Gong J X, Xiao Y F, et al. Thermal Processing technology, 2012, 41(9),165(in Chinese).
路德斌, 龚建勋, 肖逸锋,等.热加工工艺, 2012, 41(9),165.
28 Mu Y K. Design and fabrication of high entropy alloy coating with refractory multi-element in laser cladding. Master's Thesis, Kunming University of Technology, China,2017(in Chinese).
穆永坤. 激光熔覆难熔多组元高熵合金涂层设计与制备. 硕士学位论文,昆明理工大学,2017.
29 Ogilvy J A.Ndt & E International, 1985, 18(2),67.
30 Ogilvy J A.Ultrasonics, 1986, 24(6),337.
31 Ogilvy J A.Applied Mathematical Modelling, 1990, 14(5),237.
32 Ogilvy J A.Nondestructive Testing & Evaluation International, 1992, 25(1),3.
33 Ogilvy J A.Ndt & E International, 1993, 26(1),19.
34 Harker A H, Ogilvy J A, Temple J A G.Journal of Nondestructive Evaluation, 1990, 9(2-3),155.
35 Nowers O, Duxbury D J, Zhang J, et al.Ndt & E International, 2014, 61(61),58.
36 Liu Q.Estimation of grain orientation in an anisotropic weld by using a model of ultrasonic propagation in an inverse scheme, Hindawi Publishing Corp., 2014.
37 Kolkoori S R, Rahman M U, Chinta P K, et al.Ultrasonics, 2013, 53(2),396.
38 Ye J, Kim H J, Song S J, et al.Wave Motion, 2011, 48(3),275.
39 Dainty J C.Journal of Modern Optics,1991,38(11),2332.
40 Ye J, Kim H J, Song S J, et al.Ndt & E International, 2011, 44(3),290.
41 Ye J, Moysan J, Song S J, et al.International Journal of Pressure Vessels & Piping, 2012, s93-94(5),17.
42 Apfel A, Moysan J, Corneloup G, et al.Ultrasonics, 2005, 43(6),447.
43 Rupin F, Blatman G, Lacaze S, et al.Ultrasonics, 2014, 54(4),1037.
44 Zhang X Y, Gang T, Xu C G, et al. Journal of Mechanical Engineering, 2011, 47(8), 21(in Chinese).
赵新玉, 刚铁, 徐春广,等. 机械工程学报, 2011, 47(8),21.
45 Liu B, Dong S Y.Journal of Welding, 2014, 35(9),53(in Chinese).
刘彬, 董世运. 焊接学报, 2014, 35(9),53.
46 Yan X L, Dong S Y, Xu N, et al.Scientific Bulletin, 2016, 61(18),2074(in Chinese).
闫晓玲, 董世运, 薛楠,等. 科学通报, 2016, 61(18),2074.
47 Qi H, Liu Z.Physics Procedia, 2012, 39,903.
48 Rose C, Rupin F, Fouquet T, et al.Journal of Physics: Conference Series, 2014, 498,012009.
49 Chassignole M B, Dupond M O, Fouquet M T, et al.Welding in the World Le Soudage Dans Le Monde, 2011, 55(7-8),75.
50 Chassignole B, Duwig V, Ploix M A, et al.Ultrasonics, 2009, 49(8),653.
51 Huang R J, Schmerr L, Sedov A. IEEE Transactions on Ultrasonics,2008,55(12), 2692.
52 Chassignole B, Recolin P, Leymarie N, et al.American Institute of Phy-sics, 2015,1605,1486.
53 Farahmand P, Kovacevic R.Optics & Laser Technology, 2014, 63(4),154.
54 Kamara A M, Wang W, Marimuthu S, et al.Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2011, 225(B1),2341.
55 Safdar S, Pinkerton A J, Li L, et al.Applied Mathematical Modelling, 2013, 37(3),1187.
56 Yang B, Xuan F Z. In:ASME 2017 Pressure Vessels and Piping Confe-rence. Hawaii,2017.
57 Yang B. Study on creep behavior of welded joints of narrow gap submerged arc welding of CrMoV-9%Cr rotor steel.Master's Thesis, East China University of Technology, China,2017(in Chinese).
杨滨. CrMoV-9%Cr转子钢窄间隙埋弧焊焊接接头的蠕变行为研究. 硕士学位论文,华东理工大学, 2017.
58 Ghosh S, Mallett R L.Computers & Structures,1994,50(1),33.
59 Li M S. Characterization and modeling of damage in metal matrix compo-site microstructures. Ph.D. Thesis,The Ohio State University,USA,1998.
60 Grujicic M,Zhang Y.Materials Science & Engineering A, 1998,251(1-2),64.
61 Farukh F,Zhao L G,Jiang R, et al.Computational Materials Science, 2016, 111,395.
62 Chen S D, Liu X H, Liu L Z, et al.Journal of Metals, 2016, 52 (1),120(in Chinese).
陈守东, 刘相华, 刘立忠,等. 金属学报, 2016, 52(1),120.
63 Si L Y. Crystal plasticity FEM simulation of the texture evolution of FCC metal during cold processing.Master's Thesis, Northeastern University, China,2009(in Chinese).
司良英. FCC金属冷加工织构演变的晶体塑性有限元模拟. 硕士学位论文,东北大学, 2009.
64 Feng W, Li X D, Jin Y Q.Gansu Science and Technology, 2009, 25 (12), 49(in Chinese).
冯伟, 李旭东, 靳永强. 甘肃科技, 2009, 25(12),49.
[1] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[2] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[3] 蒋波, 刘雅政, 周乐育, 张朝磊, 陈列, 王国存. 重型钎具用钢组织性能控制的研究现状[J]. 材料导报, 2019, 33(5): 854-861.
[4] 谢敏, 王梅丰, 戴晓琴, 雷剑波, 王春霞, 周圣丰. 综论偏晶合金的制备技术:外场下凝固、快速凝固及激光技术[J]. 材料导报, 2019, 33(3): 490-499.
[5] 靳军, 孙俊生, 孙洪根, 卢庆亮, 许京伟, 杨云. 热作模具表面氮合金化堆焊金属的组织和性能[J]. 材料导报, 2019, 33(19): 3184-3188.
[6] 徐子法, 焦俊科, 张正, 杨亚鹏, 张文武. 镍基高温合金激光修复工艺研究[J]. 材料导报, 2019, 33(19): 3196-3202.
[7] 刘健健,朱诚意,李光强. 连铸结晶器铜板表面涂镀层应用研究进展[J]. 材料导报, 2019, 33(17): 2831-2838.
[8] 蒋智秋, 陈泉志, 董婉冰, 童庆, 李伟洲. Al对激光熔覆镍基合金涂层组织与性能的影响[J]. 材料导报, 2019, 33(12): 2035-2039.
[9] 康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
[10] 郑丽娟, 付宇明, 宗磊, 齐童. 交变磁场对高硬熔覆层成型质量的影响[J]. 材料导报, 2018, 32(6): 905-908.
[11] 焦慧彬, 陈善达, 陈送义, 陈康华. Mn和Zr对Al-Zn-Mg-Cu铝合金各向异性的影响[J]. 材料导报, 2018, 32(6): 937-942.
[12] 赵聪硕,邢志国,王海斗,李国禄,刘喆. 铁碳合金表面激光熔覆的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 418-426.
[13] 马仕达, 汤爱涛, 彭鹏, 张根, 佘加, 黄光胜, 潘复生. Mg-9Al-1Mn合金热轧板材组织与性能[J]. 材料导报, 2018, 32(24): 4286-4291.
[14] 李蓉, 陈少平, 樊文浩, 陈彦佐, 徐礼彬, 王文先, 吴玉程. 孤对电子对碲热电传输性能的影响[J]. 材料导报, 2018, 32(21): 3726-3730.
[15] 何霄,邹宇新,邱佳佳,杨玺,李绍元,马文会. 交替刻蚀制备有序锯齿形硅纳米线阵列及其光学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 167-170.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed