Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4286-4291    https://doi.org/10.11896/j.issn.1005-023X.2018.24.014
  金属与金属基复合材料 |
Mg-9Al-1Mn合金热轧板材组织与性能
马仕达1, 汤爱涛1,2, 彭鹏1, 张根1, 佘加1,2, 黄光胜1,2, 潘复生1,2
1 重庆大学材料科学与工程学院,重庆 400045;
2 重庆大学国家镁合金材料工程技术研究中心,重庆 400044
Microstructure and Properties of Mg-9Al-1Mn Alloy Sheets Processed by Hot Rolling
MA Shida1, TANG Aitao1,2, PENG Peng1, ZHANG Gen1, SHE Jia1,2, HUANG Guangsheng1,2, PAN Fusheng1,2
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400045;
2 National Engineering Research Center for Magnesium Alloys, Chongqing University,Chongqing 400044
下载:  全 文 ( PDF ) ( 2710KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了经单道次大应变热轧(LSR)和多道次小应变热轧(SSR)两种不同的轧制工艺下3 mm的Mg-9Al-1Mn(AM91)挤压板的组织和性能。通过拉伸试验对两种工艺制备的板材的力学性能进行测定,并利用X射线衍射仪(XRD)、光学显微镜以及背散射电子衍射(EBSD)分析等方法对两种工艺制备的板材的微观组织进行观察和分析。研究结果表明:相比于SSR轧制态板材,LSR轧态及退火态的板材组织都得到了细化,织构也都得到了弱化,塑性变形能力得到了明显的改善。经LSR轧态的板材的断裂延伸率(FE)为20.5%,屈服强度(YS)为193 MPa,抗拉强度(UTS)为284 MPa。LSR工艺可显著改善板材的各向异性,SSR板材退火后的各向异性值(IPA)为8.8%,LSR板材退火后的IPA为5.0%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马仕达
汤爱涛
彭鹏
张根
佘加
黄光胜
潘复生
关键词:  Mg-9Al-1Mn (AM91)合金  单道次大应变热轧  多道次小应变热轧  组织  性能  各向异性    
Abstract: In this paper, the microstructure and mechanical properties of Mg-9Al-1Mn (AM91) alloy sheets, which processed by hot extrusion in 3 mm followed by single pass large strain hot rolling (LSR) and multi pass small strain hot rolling (SSR) were investigated. And the microstructure and properties of the sheets were examined by X-ray diffraction (XRD), optical microscope, electron back scatter diffraction (EBSD) and tensile test, respectively. The results showed that, compared with the SSR method, the finer grains and more weaken texture could be achieved via using the LSR method in the as-extruded AM91 alloy. Moreover, compared with the SSR sheet, the yield strength (YS), ultimate tensile strength (UTS) and fracture elongation (FE) of LSR AM91 sheet were 193 MPa, 284 MPa and 20.5%, respectively. The plastic deformation capacity had been significantly improved. The mechanical anisotropy of the as-extruded sheet can be improved obviously by LSR method. The In-plane Anisotropy (IPA) of SSR and LSR AM91 sheet after annealing were 5% and 8.8%, respectively.
Key words:  Mg-9Al-1Mn (AM91) alloy    single pass large strain hot rolling (LSR)    small variable multi pass hot rolling (SSR)    microstructure    properties    In-plane Anisotropy (IPA)
                    发布日期:  2019-01-23
ZTFLH:  TG339  
基金资助: 国家重点研发项目(2016YFB0301100);重庆市自然科学重点基金(cstc2017jcyjBX0040)
通讯作者:  汤爱涛:通信作者,女,1963年生,教授,研究方向为轻合金及其计算机模拟 E-mail:tat@cqu.edu.cn   
作者简介:  马仕达:男,1993年生,硕士研究生,研究方向为变形镁合金 E-mail:826975301@qq.com
引用本文:    
马仕达, 汤爱涛, 彭鹏, 张根, 佘加, 黄光胜, 潘复生. Mg-9Al-1Mn合金热轧板材组织与性能[J]. 材料导报, 2018, 32(24): 4286-4291.
MA Shida, TANG Aitao, PENG Peng, ZHANG Gen, SHE Jia, HUANG Guangsheng, PAN Fusheng. Microstructure and Properties of Mg-9Al-1Mn Alloy Sheets Processed by Hot Rolling. Materials Reports, 2018, 32(24): 4286-4291.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.014  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4286
1 Ye Junhua, Tang Aitao, Ma Shida, et al. Microstructure and pro-perties of Mg-6Al-1Sn alloy by friction stir welding[J].Materials Review B: Research Papers,2017,31(11):79(in Chinese).
叶俊华,汤爱涛,马仕达,等.搅拌摩擦焊接Mg-6Al-1Sn合金组织与性能研究[J].材料导报:研究篇,2017,31(11):79.
2 Liao Qiyu, Le Qichi. Bullet proof test of magnesium alloy armor plate[J].Journal of Netshape Forming Engineering,2017,9(5):144(in Chinese).
廖启宇,乐启炽.镁合金装甲板防弹测试[J].精密成形工程,2017,9(5):144.
3 Chen Qiaowang, Tang Aitao, Xu Tingyi, et al.High performance cast magnesium rare-earth alloys: Retrospect and prospect[J].Materials Review A: Review Papers,2016,30(9):1(in Chinese).
陈巧旺,汤爱涛,许婷熠,等.高性能铸造稀土镁合金的发展[J].材料导报:综述篇,2016,30(9):1.
4 Chen Shuaifeng, Cheng Ming, Zhang Hongxuan, et al. Simulation and experiment on equal channel angular bending of magnesium alloy sheet[J].Journal of Netshape Forming Engineering,2017,9(4):90(in Chinese).
陈帅锋,程明,张宏轩,等.镁合金板材等通道弯曲变形模拟与实验[J].精密成形工程,2017,9(4):90.
5 Liu Q, Zhou X, Zhou H T, et al. The effect of extrusion conditions on the properties and textures of AZ31B alloy[J].Journal of Magnesium and Alloys,2017,5:202.
6 Zhang Jihao, Wu Yang, Wan Yuanyuan, et al. Elevated temperature compression deformation behavior of AZ91D magnesium alloy processed by equal channel angular extrusion[J].Journal of Netshape Forming Engineering,2017,9(5):177(in Chinese).
张继豪,吴洋,万元元,等.等通道角挤压AZ91D镁合金热压缩变形行为[J].精密成形工程,2017,9(5):177.
7 Luo A A. Magnesium casting technology for structural applications[J].Journal of Magnesium and Alloys,2013,1(1):2.
8 Liu Luming, Wang Zhongtang, Liu Lizhi. Numerical analysis of indenten-flatten compound deformation technology of AZ31 magne-sium alloy[J].Journal of Netshape Forming Engineering,2017,9(2):34(in Chinese).
刘鲁铭,王忠堂,刘立志.AZ31镁合金压痕-压平复合形变数值模拟[J].精密成形工程,2017,9(2):34.
9 Jiang Q, Ma X, Zhang K, et al. Anisotropy of the crystallographic orientation and corrosion performance of high-strength AZ80 Mg alloy[J].Journal of Magnesium and Alloys,2015,3:309.
10 Cao lingyu, Luo Xingbai, Liu Guoqing, et al. Development and application of military armor protection technology[J].Packing Engineering,2018,39(3):223(in Chinese).
曹凌宇,罗兴柏,刘国庆,等.军用装甲防护技术发展及应用[J].包装工程,2018,39(3):223.
11 Jin Zhaoyang, Yin Kai, Shi Weiwei, et al. Deformation temperature dependence of grain size evolution in magnesium alloys processed by equal channel angular pressing in finite element method[J].Journal of Netshape Forming Engineering,2017,9(3):19(in Chinese).
金朝阳,殷凯,史伟伟,等.变形温度对镁合金等通道转角挤压晶粒尺寸演变影响的有限元模拟[J].精密成形工程,2017,9(3):19.
12 Zhang Dingfei, Dai Qingwei, Hu Yaobo, et al. Progress in the research on rolling formation of magnesium alloy sheet[J].Journal of Materials Engineering,2009(10):85(in Chinese).
张丁非,戴庆伟,胡耀波,等.镁合金板材轧制成型的研究进展[J].工程材料,2009(10):85.
13 Liu P, Jiang H T, Cai Z X. The effect of Y, Ce and Gd on texture, recrystallization and mechanical property of Mg-Zn alloys[J].Journal of Alloys and Compounds,2016,4:188.
14 Li L, Nguyen D N. Effect of yttrium on corrosion behavior of extruded AZ61 Mg alloy[J].Journal of Alloys and Compounds,2016,4:44.
15 Staiger M P, Pietak A M, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: A review[J].Biomaterials,2006,27(9):1728.
16 Barnett M R, Keshavarz Z, Nave M D. Microstructural features of rolled Mg-3Al-1Zn[J].Metallurgical and Materials Transactions A,2005,36A(7):1697.
17 Pérez-PradoM T, Del Valle J A, Contreras J M, et al. Microstructural evolution during large strain hot rolling of an AM60 Mg alloy[J].Scripta Materialia,2004,50(5):661.
18 Pérez-Prado M T, Del Valle J A, Ruano O A.Texture evolution du-ring large-strain hot rolling of the Mg AZ61 alloy[J].Materials Science and Engineering A,2003,355:68.
19 Zhan Meiyan, Li Yuanyuan, Chen Wande, et al. Preparation of fine-grain AZ31 alloy sheet by large strain rolling technology[J].Journal of South China University of Technology, Natural Science Edition,2007,35(8):16(in Chinese).
詹美艳,李元元,陈宛德,等.大应变轧制技术制备细晶AZ31镁合金板材[J].华南理工大学学报,自然科学版,2007,35(8):16.
20 Guo F, Zhang D F, Fan X W, et al. Deformation behavior of AZ31 Mg alloys sheet during large strain hot rolling process: A study on microstructure and texture evolutions of an intermediate--rolled sheet[J].Journal of Alloys and Compounds,2016,663:140.
21 Huang X S, Suzuki K,Chino Y, et al. Texture and stretch formability of AZ61 and AM60 magnesium alloy sheets processed by high-temperature rolling[J].Journal of Alloys and Compounds,2015,632:94.
22 Zhou T, Yang Z, Hu D, et al.Effect of the final rolling speeds on the stretch formability of AZ31 alloy sheet rolled at a high temperature[J].Journal of Alloys and Compounds,2015,650:436.
23 Huang X S, Suzuki K, Chino Y, et al.Improvement of stretch for-mability of Mg-3Al-1Zn alloy sheet by high temperature rolling at finishing pass[J].Journal of Alloys and Compounds,2011,509:7579.
24 Xu C, Zheng M Y, Xu S W, et al. Improving strength and ductility of Mg-Gd-Y-Zn-Zr alloy simultaneously via extrusion, hot rolling and ageing[J].Materials Science and Engineering A,2015,643:137.
25 Yu Z W, Hu M D, Tang A T, et al. Effect of aluminium on the microstructure and mechanical properties of as-cast magnesium-manganese alloys[J].Materials Science and Technology,2017,33(17):2086.
26 Yu Zhengwen. Investigation on microstructure and mechanical pro-perties of Mg-Mn series alloys[D].Chongqing: Chongqing University,2015(in Chinese).
喻正文.Mg-Mn系合金显微组织及力学性能的研究[D].重庆:重庆大学,2015.
27 Jata K V, Hopkins A K, Rioja R J. The anisotropy and texture of Al-Li alloys[J].Materials Science Forum,1996,217:647.
28 She J, Pan F S, Hu H H.Microstructures and mechanical properties of as-extruded Mg-5Sn-1Zn-xAl (x=1, 3 and 5) alloys[J].Progress in Natural Science: Materials International.2015,25:267.
29 Huang X S, Suzuki K, Chino Y, et al. Influence of aluminum content on the texture and sheet formability of AM series magnesium alloys[J].Materials Science and Engineering A,2015,633:144.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[3] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[4] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[5] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[6] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[7] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[8] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[9] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[10] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[11] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[12] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[13] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[14] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[15] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed