Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 937-942    https://doi.org/10.11896/j.issn.1005-023X.2018.06.015
  材料研究 |
Mn和Zr对Al-Zn-Mg-Cu铝合金各向异性的影响
焦慧彬1, 2, 陈善达2, 3, 陈送义1, 2, 陈康华1, 2, 3
1 中南大学轻合金研究院,长沙 410083;
2 中南大学有色金属先进结构材料与制造协同创新中心,长沙 410083;
3 中南大学轻质高强结构材料重点实验室,长沙 410083
Effect of Mn and Zr on the Anisotropy of Al-Zn-Mg-Cu Aluminum Alloy
JIAO Huibin1, 2, CHEN Shanda2, 3, CHEN Songyi1, 2, CHEN Kanghua1, 2, 3
1 Light Alloy Research Institute, Central South University, Changsha 410083;
2 Collaborative Innovation Center of Advanced Nonferrous Structural Materials and Manufacturing, Central South University, Changsha 410083;
3 Science and Technology on High Strength Structural Materials Laboratory, Central South University, Changsha 410083
下载:  全 文 ( PDF ) ( 4138KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及室温拉伸、剥落腐蚀、晶间腐蚀等测试方法,研究了微量的Mn和Zr对Al-Zn-Mg-Cu铝合金的组织和性能各向异性的影响。结果表明,在Al-Zn-Mg-Cu-Ti合金中,分别添加微量的Mn和Zr,合金中对应析出细小弥散的Al6Mn和Al3Zr相,这两相均能抑制基体再结晶,促使合金的晶粒纵横比增大。合金的力学性能、抗晶间腐蚀和剥落腐蚀性能提高,但性能各向异性增大。同时,结果显示Zr对合金的组织和性能各向异性的影响显著大于Mn。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
焦慧彬
陈善达
陈送义
陈康华
关键词:  Al-Zn-Mg-Cu铝合金  Mn  Zr  各向异性    
Abstract: The effect of Mn and Zr on the anisotropy of Al-Zn-Mg-Cu alloys was investigated by means of mechanical tensile, exfoliation corrosion and intergranular corrosion testing combined with optical microscopy(OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the tiny and diffuse Al6Mn, Al3Zr precipitations appeared in the alloys after the addition of Mn and Zr, which could inhibited the recrystallization of Al-Zn-Mg-Cu-Ti alloys and contri-buted to the increase of grain aspect ratio in the alloy. Therefore, the mechanical properties and the abilities of resistance to intergra-nular corrosion, exfoliation corrosion were improved, but the anisotropy of alloys was increased. Moreover, the results revealed that the effect of Zr on anisotropy of microstructure and properties in the alloy was significantly larger than that of Mn.
Key words:  Al-Zn-Mg-Cu aluminum alloy    Mn    Zr    anisotropy
               出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TG146.2  
基金资助: 国家重点研发计划(2016YFB0300801); 国家重点基础研究计划(2012CB619502); 国家自然科学基金(51201186); 国家重大科研仪器设备研制专项(51327902)
通讯作者:  陈康华,男,1962年生,博士,教授,主要从事铝合金研究 E-mail:Khchen@csu.edu.cn   
作者简介:  焦慧彬:女,1988年生,博士,主要从事7系铝合金研究 E-mail:370638525@qq.com
引用本文:    
焦慧彬, 陈善达, 陈送义, 陈康华. Mn和Zr对Al-Zn-Mg-Cu铝合金各向异性的影响[J]. 材料导报, 2018, 32(6): 937-942.
JIAO Huibin, CHEN Shanda, CHEN Songyi, CHEN Kanghua. Effect of Mn and Zr on the Anisotropy of Al-Zn-Mg-Cu Aluminum Alloy. Materials Reports, 2018, 32(6): 937-942.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.015  或          http://www.mater-rep.com/CN/Y2018/V32/I6/937
1 Ni Peixiang, Zuo Xiurong, Wu Xinfeng. Present research status of Al-Zn-Mg alloy series[J].Light Alloy Fabrication Technology,2007,35(1):7(in Chinese).
倪培相,左秀荣,吴欣凤.Al-Zn-Mg系合金研究现状[J].轻合金加工技术,2007,35(1):7.
2 Song R G, Dietzel W, Zhang B J, et al. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy[J].Acta Materialia,2004,52(16):4727.
3 Dumont D, Deschamps A, Brechet Y. On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy[J].Materials Science and Engineering:A,2003,356(1-2):326.
4 Karabin M E, Barlat F, Schultz R W. Numerical and experimental study of the cold expansion process in 7085 plate using a modified split sleeve[J].Journal of Materials Processing Technology,2007,189(1-3):45.
5 Hou Taixue, Wu Yunxue, Xiong Shanjiang. The effect of heat treatment on the fracture toughness of aluminum alloy LC9 forgings[J].Heat Treatment of Metals,1991,2(8):38(in Chinese).
侯太学,吴运学,熊山江.热处理对LC9合金锻件断裂韧性的影响[J].金属热处理,1991,2(8):38.
6 Zhang Xinming, Han Nianmei, Liu Shengdan, et al. Inhomogeneity of texture, tensile property and fracture toughness of 7050 aluminum alloy thick plate[J].The Chinese Journal of Nonferrous Metals,2010,2(20):202(in Chinese).
张新明,韩念梅,刘胜胆,等.7050铝合金厚板织构、拉伸性能及断裂韧性的不均匀性[J].中国有色金属学报,2010,2(20):202.
7 Robinson J S, Cudd R L, Tanner D A, et al. Quench sensitivity and tensile property inhomogeneity in 7010 forgings[J].Journal of Materials Processing Technology,2001,119(1-3):261.
8 Cai Gangyi, Lv Guangshu, Ma Zhuang. Heat treatment process aimed at elimination of anisotropy of 7A05 aluminum alloy sheet[J].Transactions of Beijing Institute of Technology,2007,10(27):298(in Chinese).
蔡刚毅,吕广庶,马壮.消除7A05铝合金板材各向异性的热处理工艺[J].北京理工大学学报,2007,10(27):298.
9 Zhang Wenjing, Ren Weicai, Deng Zhenzhen, et al. Effect of zirconium on the microstructure and mechanical properties of super-high strength aluminum alloys[J].Nonferrous Metals Processing,2013,42(4):8(in Chinese).
张文静,任伟才,邓桢桢,等.Zr元素对超高强铝合金微观组织及力学性能的影响[J].有色金属加工,2013,42(4):8.
10 Tsivoulas D, Robson J D, Sigli C, et al. Interactions between zirconium and manganese dispersoid-forming elements on their combined addition in Al-Cu-Li alloys[J].Acta Materialia,2012,60(13-14):5245.
11 Li J, Gao X, Jie Z, et al. Texture and magnetostriction in rolled Fe-Ga alloy[J].Acta Metallurgica Sinica,2008,44(9):1031.
12 Tanaka H, Esaki H, Yamada K, et al. Improvement of mechanical properties of 7475 based aluminum alloy sheets by controlled warm rolling[J].Sumitomo Light Metal Technical Reports,2004,45(1):69.
13 Fang H C, Chao H, Chen K H. Effect of recrystallization on intergranular fracture and corrosion of Al-Zn-Mg-Cu-Zr alloy[J].Journal of Alloys and Compounds,2015,622(15):166.
14 Minoda T, Yoshida H. Effect of grain boundary characteristics on intergranular corrosion resistance of 6061 aluminum alloy extrusion[J].Metallurgical and Materials Transactions A,2002,33(9):2891.
15 Day M K B, Cornish A J, Dent T P. The relationship between structure and stress-corrosion life in an Al-Zn-Mg alloy[J].Materials Science Journal,1969,3(1):175.
16 He Y D, Zhang X M, You J H. Effect of minor Sc and Zr on microstructure and mechanical properties of Al-Zn-Mg-Cu[J].Transactions of Nonferrous Metals Society of China,2006,16(5):1228.
17 Kannan M B, Raja V S. Enhancing stress corrosion cracking resis-tance in Al-Zn-Mg-Cu-Zr alloy through inhibiting recrystallization[J].Engineering Fracture Mechanics,2010,77(2):249.
18 Robson J D, Prangnell P B. Predicting recrystallised volume fraction in aluminium alloy 7050 hot rolled plate[J].Materials Science and Technology,2002,18(6):607.
[1] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[2] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[3] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[4] 郑嫄, 蔡中义, 程丽任, 车朝杰, 张洪杰. 铸态和挤压态Mg-4Sm-Al-0.3Mn-xZn合金微观组织和力学性能研究[J]. 材料导报, 2019, 33(8): 1354-1360.
[5] 周超, 李得天, 周晖, 张凯锋, 曹生珠. MEMS器件真空封装用非蒸散型吸气剂薄膜研究概述[J]. 材料导报, 2019, 33(3): 438-443.
[6] 巴奇楠, 宋仁伯, 冯一帆, 李论. 表面爆炸处理后的ZGMn13Cr2钢的冲击磨损性能及硬化机理[J]. 材料导报, 2019, 33(10): 1712-1716.
[7] 周超, 王辉, 欧阳柳章, 朱敏. 高压复合储氢罐用储氢材料的研究进展[J]. 材料导报, 2019, 33(1): 117-126.
[8] 康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
[9] 张玉, 黄晓锋, 马颖, 闫峰云, 李元东, 郝远. 添加Sm对不同尺寸Mg-6Zn-0.4Zr镁合金坯料非枝晶组织演变的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1283-1288.
[10] 徐志超, 冯中学, 史庆南, 杨应湘, 王效琪, 起华荣. 定向凝固制备Mg98.5Zn0.5Y1合金中LPSO相的结构及其对合金电磁屏蔽性能的影响[J]. 材料导报, 2018, 32(6): 865-869.
[11] 朱利敏, 李全安. Mg-8.08Gd-2.41Sm-0.3Zr合金热压缩变形及热加工图[J]. 《材料导报》期刊社, 2018, 32(4): 593-597.
[12] 邓燕君, 黄光杰, 曹玲飞, 吴晓东, 黄利. 预变形对Al-Cu-Li-Mn-Zr合金的第二相析出及力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 569-573.
[13] 洪凯, 吴林, 蒋伟, 吴继礼, 张博. Cu-Zr非晶合金薄带的高温拉伸蠕变研究[J]. 材料导报, 2018, 32(24): 4309-4313.
[14] 马仕达, 汤爱涛, 彭鹏, 张根, 佘加, 黄光胜, 潘复生. Mg-9Al-1Mn合金热轧板材组织与性能[J]. 材料导报, 2018, 32(24): 4286-4291.
[15] 肖国庆, 周盼, 丁冬海. 熔盐对ZrO2纤维模板辅助燃烧合成ZrB2纤维的影响[J]. 材料导报, 2018, 32(22): 3875-3879.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed