Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 167-170    https://doi.org/10.11896/j.issn.1005-023X.2018.02.001
  物理   材料研究 |材料 |
交替刻蚀制备有序锯齿形硅纳米线阵列及其光学性能研究
何霄1,邹宇新1,邱佳佳1,杨玺2,李绍元1,马文会1
1 昆明理工大学,冶金与能源工程学院/复杂有色金属资源清洁利用国家重点实验室,昆明 650093
2 云南省能源研究院有限公司,昆明 650228
Optical Properties of Ordered Zigzag Silicon Nanowire Arrays Fabricated by Alternate Etching
Xiao HE1,Yuxin ZOU1,Jiajia QIU1,Xi YANG2,Shaoyuan LI1,Wenhui MA1
1 Faculty of Metallurgical and Energy Engineering/State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming University of Science and Technology,Kunming 650093
2 Yunnan Provincial Energy Research Institute Co. Ltd.,Kunming 650228
下载:  全 文 ( PDF ) ( 1901KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用金属催化化学刻蚀法(MCCE),以金属Ag为催化剂,在HF与H2O2体系中通过交替刻蚀在P(111)硅衬底上制备出锯齿形硅纳米线阵列。利用扫描电子显微镜对硅纳米线的形貌进行了表征,研究了HF浓度与H2O2浓度对纳米线刻蚀方向的调控作用。选取不同的HF与H2O2浓度配比,分别对硅基底各向同性刻蚀与各向异性刻蚀进行调控,使得刻蚀方向对溶液浓度的变化能够快速响应。在溶液Ⅰ([HF]=2.3 mol/L,[H2O2]=0.4 mol/L)与溶液Ⅱ([HF]=9.2 mol/L,[H2O2]=0.04 mol/L)中交替刻蚀,制备出刻蚀方向高度可控的大规模锯齿形硅纳米线。利用紫外-可见分光光度计对锯齿形硅纳米线的减反射性能进行研究,结果表明,其表现出优异的减反特性,最低反射率为5.9%。纳米线形貌的高度可控性使其在微电子器件领域也具有巨大的应用前景。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何霄
邹宇新
邱佳佳
杨玺
李绍元
马文会
关键词:  金属催化化学刻蚀  交替刻蚀  各向同性  各向异性  锯齿形硅纳米线    
Abstract: 

With the method of metal-catalytic chemical etching (MCCE), when employing metal Ag as catalyst, zigzag silicon nanowire arrays were fabricated by conducting alternate etching experiments on P(111) silicon substrate in HF and H2O2 systems. Scanning electron microscope (SEM) was adopted to characterize the morphology of silicon nanowires. The mutual effect of HF and H2O2 solution’s concentration on the etching direction of silicon nanowires was investigated, and isotropic etching and anisotropic etching were intensified through respectively adjusting and controlling the concentration of HF and H2O2 solution, making it possible that the etching direction can make rapid response to the solution concentration during the alternate etching process. Zigzag silicon nanowires with highly adjustable etching direction were fabricated when conducting alternate etching experiments in solution Ⅰ([HF]=2.3 mol/L,[H2O2]=0.4 mol/L) and solution Ⅱ([HF]=9.2 mol/L,[H2O2]=0.04 mol/L). The anti-reflection properties of zigzag silicon nanowires were measured by UV-Vis spectrophotometer, the lowest reflectivity was 5.9%, which shows a good prospect for photovoltaic applications. Because of the high controllability of the nanowires morphology, it has a great application prospect in the field of microelectronic devices.

Key words:  metal-catalytic chemical etching    alternate etching    isotropy    anisotropy    zigzag silicon nanowires
出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TB321  
基金资助: 国家自然科学基金(51504117;61764009;51762043);昆明理工大学人培项目(KKSY201563032);云南省教育厅基金(2015Y069)
引用本文:    
何霄,邹宇新,邱佳佳,杨玺,李绍元,马文会. 交替刻蚀制备有序锯齿形硅纳米线阵列及其光学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 167-170.
Xiao HE,Yuxin ZOU,Jiajia QIU,Xi YANG,Shaoyuan LI,Wenhui MA. Optical Properties of Ordered Zigzag Silicon Nanowire Arrays Fabricated by Alternate Etching. Materials Reports, 2018, 32(2): 167-170.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.001  或          https://www.mater-rep.com/CN/Y2018/V32/I2/167
图1  单一溶液中刻蚀所得硅纳米线断面的SEM图: (a)[HF]=4.6 mol/L, [H2O2]=0.04 mol/L; (b)[HF]=4.6 mol/L, [H2O2]=0.4 mol/L
图2  交替刻蚀制备锯齿形硅纳米线示意图
图3  溶液Ⅰ([HF]=4.6 mol/L, [H2O2]=0.4 mol/L)与溶液Ⅱ([HF]=4.6 mol/L,[H2O2]=0.04 mol/L)在不同交替频率下刻蚀30 min所得硅纳米线断面的SEM图:(a)5 min—5 min—5 min—10 min—5 min;(b)10×3 min
图4  溶液Ⅰ([HF]=2.3 mol/L, [H2O2]=0.4 mol/L)与溶液Ⅱ([HF]=9.2 mol/L, [H2O2]=0.04 mol/L)不同交替频率下刻蚀30 min所得硅纳米线断面的SEM图:(a)5 min—5 min—5 min—10 min—5 min;(b)10×3 min;(c)30×1 min
图5  未刻蚀硅原片及不同结构硅纳米线结构的反射光谱(2001 100 nm)
图6  不同硅纳米线阵列结构表面的SEM形貌:(a)锯齿型硅纳米线;(b)竖直生长硅纳米线
1 Tian B, Zheng X, Kempa T J , et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources[J]. Nature, 2007,449(7164):885.
2 Patolsky F, Zheng G, Lieber C M . Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species[J]. Nature Protocols, 2006,1(4):1711.
3 Peng K Q, Wang X, Lee S T . Gas sensing properties of single crystalline porous silicon nanowires[J]. Applied Physics Letters, 2009,95(24):243112.
4 Jia Y, Zhang Z, Xiao L , et al. Carbon nanotube-silicon nanowire heterojunction solar cells with gas-dependent photovoltaic perfor-mances and their application in self-powered NO2 detecting[J]. Nanoscale Research Letters, 2016,11(1):299.
5 Kang K, Lee H S, Han D W , et al. Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery[J]. Applied Physics Letters, 2010,96(5):053110.
6 Kelzenberg M D, Turner-Evans D B, Kayes B M , et al. Photovoltaic measurements in single-nanowire silicon solar cells[J]. Nano Letters, 2008,8(2):710.
7 Feng Ziying, Jiang Chen, Zeng Yingying , et al. Light-trapping structure and Raman spectra of SiNWs fabrication by MACE[J]. Acta Energiae Solaris Sinica, 2015,36(9):2083(in Chinese).
8 冯梓颖, 蒋忱, 曾滢瀛 , 等. MACE 制备的硅纳米线拉曼光谱及陷光结构研究[J]. 太阳能学报, 2015,36(9):2083.
9 Fan G, Zhu H, Wang K , et al. Graphene/silicon nanowire Schottky junction for enhanced light harvesting[J]. Acs Appl Mater Interfaces, 2011,3(3):721.
10 Chen Yating, Wang Jinliang, Chen Zesheng , et al. Preparation and optical properties of silicon nanowires[J]. Journal of Synthetic Crystals, 2016,45(8):1998(in Chinese).
11 陈亚婷, 王金良, 陈泽升 , 等. 硅纳米线的制备及其光学性能的研究[J]. 人工晶体学报, 2016,45(8):1998.
12 Chiou A H, Chien T C, Su C K , et al. The effect of differently sized Ag catalysts on the fabricationof a silicon nanowire array using Ag-assisted electroless etching[J]. Current Applied Physics, 2013,13(4):717.
13 Shin N, Filler M A . Controlling silicon nanowires grown direction via surface chemistry[J]. Nano Letters, 2012,12(6):2865.
14 Schmidt V, Senz S, G?sele U . Diameter-dependent growth direction of epitaxial silicon nanowires[J]. Nano Letters, 2005,5(5):931.
15 Sharma S, Kamins T, Williams R S . Synjournal of thin silicon nanowires using gold-catalyzed chemical vapor deposition[J]. Applied Physics A, 2005,80(6):1225.
16 Nong M H, Cheong W S, Yoon D Y , et al. Growth of silicon nanowires by chemical vapor deposition approach by charged cluster model[J]. Journal of Crystal Growth, 2000,218(1):33.
17 Yu D P, Xing Y J, Hang Q L , et al. Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism[J]. Physica E, 2001,9(2):305.
18 Li S Y, Ma W H, Zhou Y . Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature[J]. Nanoscale Research Letters, 2014,9(1):196.
19 Liu R, Zhang F, Celal C , et al. Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching[J]. Nanoscale Research Letters, 2013,8(1):155.
20 Fan Donghua, Xu Shuai, Xu Manqin . Preparation and growth me-chanism of silicon nanowire arrays[J]. Materials Review B:Research Papers, 2015,29(12):45(in Chinese).
21 范东华, 徐帅, 许满钦 . 硅基径向纳米线阵列的制备及其机理研究[J]. 材料导报:研究篇, 2015,29(12):45.
22 Wu S, Zhang T, Zheng R , et al. Facile morphological control of single-crystalline silicon nanowires[J]. Applied Surface Science, 2012,258(24):9792.
23 Peng K, Lu A, Zhang R , et al. Motility of metal nanoparticles in silicon and induced anisotropic silicon etching[J]. Advanced Functional Materials, 2008,18(19):3026.
24 Kim J, Han H, Kim Y H , et al. Au/Ag bilayered metal mesh as a Si etching catalyst for controlled fabrication of Si nanowires[J]. ACS Nano, 2011,5(4):3222.
25 Liu Y, Sun W, Jiang Y , et al. Fabrication of bifacial wafer-scale si-licon nanowire arrays with ultra-high aspect ratio through controllable metal-assisted chemical etching[J]. Materials Letters, 2015,139:437.
26 Qiu M, Huang Y, Liu Z , et al. Numerical study on effect of silicon texture structure on reflectance of light[J]. Acta Optica Sinica, 2008,28(12):2394.
[1] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[2] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[3] 乔礼红, 游才印, 付花睿, 田娜, 白洋, 刘小鱼. 不同界面次序CoFeMnSi多层膜的磁各向异性[J]. 材料导报, 2024, 38(18): 23040015-6.
[4] 付璐, 赵晏, 任帅, 孙智妍, 赵英利, 张中武. 横纵轧对低合金高强度钢夹杂物变形行为和低温韧性的影响[J]. 材料导报, 2024, 38(17): 23020218-6.
[5] 俞彦飞, 王暄, 高鑫, 宁锋, 张浩鹏, 岳红彦. 基于定向冷冻技术构建的多孔材料及其应用[J]. 材料导报, 2023, 37(5): 21050074-11.
[6] 蔡兴瑞, 万逸飞, 李翰超, 宋嘉玲, 冯志强, 曾庆丰, 关康, 刘建涛. 连续碳化硅纤维增韧陶瓷基复合材料微结构数字化建模和宏观各向异性模量预测[J]. 材料导报, 2023, 37(13): 21050041-7.
[7] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[8] 窦学铮, 蒋立武, 宋尽霞, 赵云松. 镍基单晶高温合金力学性能各向异性的研究进展[J]. 材料导报, 2022, 36(24): 21040222-15.
[9] 周国伟, 李枝兰, 王晓娇. 应力与取向调控超薄La0.7Sr0.3MnO3薄膜各向异性的研究[J]. 材料导报, 2022, 36(19): 21020016-6.
[10] 常超, 张辉, 来媛, 李良, 白晓旭. FeAlNiCrMn高熵合金结构稳定性和力学性能的第一性原理计算[J]. 材料导报, 2022, 36(14): 21040230-5.
[11] 罗涛, 马爱洁, 白海燕, 程勇博, 周宏伟. 磁诱导高取向水凝胶的构筑及功能[J]. 材料导报, 2021, 35(5): 5206-5213.
[12] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[13] 吴韶飞, 闫霆, 蒯子函, 潘卫国. 高各向异性十六酸/膨胀石墨定形相变储热材料的性能[J]. 材料导报, 2021, 35(4): 4186-4193.
[14] 黄健康, 刘玉龙, 刘光银, 杨茂鸿, 樊丁. 微纳米尺度单晶铜各向异性纳米力学分析[J]. 材料导报, 2021, 35(24): 24117-24121.
[15] 于涵, 何雄, 张孔斌, 何斌, 罗丰, 孙志刚. 锗基半导体器件的界面磁阻效应和体磁阻效应[J]. 材料导报, 2021, 35(2): 2069-2073.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed