Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 167-170    https://doi.org/10.11896/j.issn.1005-023X.2018.02.001
  物理   材料研究 |材料 |
交替刻蚀制备有序锯齿形硅纳米线阵列及其光学性能研究
何霄1,邹宇新1,邱佳佳1,杨玺2,李绍元1,马文会1
1 昆明理工大学,冶金与能源工程学院/复杂有色金属资源清洁利用国家重点实验室,昆明 650093
2 云南省能源研究院有限公司,昆明 650228
Optical Properties of Ordered Zigzag Silicon Nanowire Arrays Fabricated by Alternate Etching
Xiao HE1,Yuxin ZOU1,Jiajia QIU1,Xi YANG2,Shaoyuan LI1,Wenhui MA1
1 Faculty of Metallurgical and Energy Engineering/State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming University of Science and Technology,Kunming 650093
2 Yunnan Provincial Energy Research Institute Co. Ltd.,Kunming 650228
下载:  全 文 ( PDF ) ( 1901KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用金属催化化学刻蚀法(MCCE),以金属Ag为催化剂,在HF与H2O2体系中通过交替刻蚀在P(111)硅衬底上制备出锯齿形硅纳米线阵列。利用扫描电子显微镜对硅纳米线的形貌进行了表征,研究了HF浓度与H2O2浓度对纳米线刻蚀方向的调控作用。选取不同的HF与H2O2浓度配比,分别对硅基底各向同性刻蚀与各向异性刻蚀进行调控,使得刻蚀方向对溶液浓度的变化能够快速响应。在溶液Ⅰ([HF]=2.3 mol/L,[H2O2]=0.4 mol/L)与溶液Ⅱ([HF]=9.2 mol/L,[H2O2]=0.04 mol/L)中交替刻蚀,制备出刻蚀方向高度可控的大规模锯齿形硅纳米线。利用紫外-可见分光光度计对锯齿形硅纳米线的减反射性能进行研究,结果表明,其表现出优异的减反特性,最低反射率为5.9%。纳米线形貌的高度可控性使其在微电子器件领域也具有巨大的应用前景。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何霄
邹宇新
邱佳佳
杨玺
李绍元
马文会
关键词:  金属催化化学刻蚀  交替刻蚀  各向同性  各向异性  锯齿形硅纳米线    
Abstract: 

With the method of metal-catalytic chemical etching (MCCE), when employing metal Ag as catalyst, zigzag silicon nanowire arrays were fabricated by conducting alternate etching experiments on P(111) silicon substrate in HF and H2O2 systems. Scanning electron microscope (SEM) was adopted to characterize the morphology of silicon nanowires. The mutual effect of HF and H2O2 solution’s concentration on the etching direction of silicon nanowires was investigated, and isotropic etching and anisotropic etching were intensified through respectively adjusting and controlling the concentration of HF and H2O2 solution, making it possible that the etching direction can make rapid response to the solution concentration during the alternate etching process. Zigzag silicon nanowires with highly adjustable etching direction were fabricated when conducting alternate etching experiments in solution Ⅰ([HF]=2.3 mol/L,[H2O2]=0.4 mol/L) and solution Ⅱ([HF]=9.2 mol/L,[H2O2]=0.04 mol/L). The anti-reflection properties of zigzag silicon nanowires were measured by UV-Vis spectrophotometer, the lowest reflectivity was 5.9%, which shows a good prospect for photovoltaic applications. Because of the high controllability of the nanowires morphology, it has a great application prospect in the field of microelectronic devices.

Key words:  metal-catalytic chemical etching    alternate etching    isotropy    anisotropy    zigzag silicon nanowires
               出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TB321  
基金资助: 国家自然科学基金(51504117;61764009;51762043);昆明理工大学人培项目(KKSY201563032);云南省教育厅基金(2015Y069)
引用本文:    
何霄,邹宇新,邱佳佳,杨玺,李绍元,马文会. 交替刻蚀制备有序锯齿形硅纳米线阵列及其光学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 167-170.
Xiao HE,Yuxin ZOU,Jiajia QIU,Xi YANG,Shaoyuan LI,Wenhui MA. Optical Properties of Ordered Zigzag Silicon Nanowire Arrays Fabricated by Alternate Etching. Materials Reports, 2018, 32(2): 167-170.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.001  或          http://www.mater-rep.com/CN/Y2018/V32/I2/167
图1  单一溶液中刻蚀所得硅纳米线断面的SEM图: (a)[HF]=4.6 mol/L, [H2O2]=0.04 mol/L; (b)[HF]=4.6 mol/L, [H2O2]=0.4 mol/L
图2  交替刻蚀制备锯齿形硅纳米线示意图
图3  溶液Ⅰ([HF]=4.6 mol/L, [H2O2]=0.4 mol/L)与溶液Ⅱ([HF]=4.6 mol/L,[H2O2]=0.04 mol/L)在不同交替频率下刻蚀30 min所得硅纳米线断面的SEM图:(a)5 min—5 min—5 min—10 min—5 min;(b)10×3 min
图4  溶液Ⅰ([HF]=2.3 mol/L, [H2O2]=0.4 mol/L)与溶液Ⅱ([HF]=9.2 mol/L, [H2O2]=0.04 mol/L)不同交替频率下刻蚀30 min所得硅纳米线断面的SEM图:(a)5 min—5 min—5 min—10 min—5 min;(b)10×3 min;(c)30×1 min
图5  未刻蚀硅原片及不同结构硅纳米线结构的反射光谱(2001 100 nm)
图6  不同硅纳米线阵列结构表面的SEM形貌:(a)锯齿型硅纳米线;(b)竖直生长硅纳米线
1 Tian B, Zheng X, Kempa T J , et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources[J]. Nature, 2007,449(7164):885.
2 Patolsky F, Zheng G, Lieber C M . Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species[J]. Nature Protocols, 2006,1(4):1711.
3 Peng K Q, Wang X, Lee S T . Gas sensing properties of single crystalline porous silicon nanowires[J]. Applied Physics Letters, 2009,95(24):243112.
4 Jia Y, Zhang Z, Xiao L , et al. Carbon nanotube-silicon nanowire heterojunction solar cells with gas-dependent photovoltaic perfor-mances and their application in self-powered NO2 detecting[J]. Nanoscale Research Letters, 2016,11(1):299.
5 Kang K, Lee H S, Han D W , et al. Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery[J]. Applied Physics Letters, 2010,96(5):053110.
6 Kelzenberg M D, Turner-Evans D B, Kayes B M , et al. Photovoltaic measurements in single-nanowire silicon solar cells[J]. Nano Letters, 2008,8(2):710.
7 Feng Ziying, Jiang Chen, Zeng Yingying , et al. Light-trapping structure and Raman spectra of SiNWs fabrication by MACE[J]. Acta Energiae Solaris Sinica, 2015,36(9):2083(in Chinese).
8 冯梓颖, 蒋忱, 曾滢瀛 , 等. MACE 制备的硅纳米线拉曼光谱及陷光结构研究[J]. 太阳能学报, 2015,36(9):2083.
9 Fan G, Zhu H, Wang K , et al. Graphene/silicon nanowire Schottky junction for enhanced light harvesting[J]. Acs Appl Mater Interfaces, 2011,3(3):721.
10 Chen Yating, Wang Jinliang, Chen Zesheng , et al. Preparation and optical properties of silicon nanowires[J]. Journal of Synthetic Crystals, 2016,45(8):1998(in Chinese).
11 陈亚婷, 王金良, 陈泽升 , 等. 硅纳米线的制备及其光学性能的研究[J]. 人工晶体学报, 2016,45(8):1998.
12 Chiou A H, Chien T C, Su C K , et al. The effect of differently sized Ag catalysts on the fabricationof a silicon nanowire array using Ag-assisted electroless etching[J]. Current Applied Physics, 2013,13(4):717.
13 Shin N, Filler M A . Controlling silicon nanowires grown direction via surface chemistry[J]. Nano Letters, 2012,12(6):2865.
14 Schmidt V, Senz S, G?sele U . Diameter-dependent growth direction of epitaxial silicon nanowires[J]. Nano Letters, 2005,5(5):931.
15 Sharma S, Kamins T, Williams R S . Synjournal of thin silicon nanowires using gold-catalyzed chemical vapor deposition[J]. Applied Physics A, 2005,80(6):1225.
16 Nong M H, Cheong W S, Yoon D Y , et al. Growth of silicon nanowires by chemical vapor deposition approach by charged cluster model[J]. Journal of Crystal Growth, 2000,218(1):33.
17 Yu D P, Xing Y J, Hang Q L , et al. Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism[J]. Physica E, 2001,9(2):305.
18 Li S Y, Ma W H, Zhou Y . Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature[J]. Nanoscale Research Letters, 2014,9(1):196.
19 Liu R, Zhang F, Celal C , et al. Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching[J]. Nanoscale Research Letters, 2013,8(1):155.
20 Fan Donghua, Xu Shuai, Xu Manqin . Preparation and growth me-chanism of silicon nanowire arrays[J]. Materials Review B:Research Papers, 2015,29(12):45(in Chinese).
21 范东华, 徐帅, 许满钦 . 硅基径向纳米线阵列的制备及其机理研究[J]. 材料导报:研究篇, 2015,29(12):45.
22 Wu S, Zhang T, Zheng R , et al. Facile morphological control of single-crystalline silicon nanowires[J]. Applied Surface Science, 2012,258(24):9792.
23 Peng K, Lu A, Zhang R , et al. Motility of metal nanoparticles in silicon and induced anisotropic silicon etching[J]. Advanced Functional Materials, 2008,18(19):3026.
24 Kim J, Han H, Kim Y H , et al. Au/Ag bilayered metal mesh as a Si etching catalyst for controlled fabrication of Si nanowires[J]. ACS Nano, 2011,5(4):3222.
25 Liu Y, Sun W, Jiang Y , et al. Fabrication of bifacial wafer-scale si-licon nanowire arrays with ultra-high aspect ratio through controllable metal-assisted chemical etching[J]. Materials Letters, 2015,139:437.
26 Qiu M, Huang Y, Liu Z , et al. Numerical study on effect of silicon texture structure on reflectance of light[J]. Acta Optica Sinica, 2008,28(12):2394.
[1] 康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
[2] 焦慧彬, 陈善达, 陈送义, 陈康华. Mn和Zr对Al-Zn-Mg-Cu铝合金各向异性的影响[J]. 材料导报, 2018, 32(6): 937-942.
[3] 马仕达, 汤爱涛, 彭鹏, 张根, 佘加, 黄光胜, 潘复生. Mg-9Al-1Mn合金热轧板材组织与性能[J]. 材料导报, 2018, 32(24): 4286-4291.
[4] 李蓉, 陈少平, 樊文浩, 陈彦佐, 徐礼彬, 王文先, 吴玉程. 孤对电子对碲热电传输性能的影响[J]. 材料导报, 2018, 32(21): 3726-3730.
[5] 李建雄, 贾红玉, 陈纯锴, 赵晓明. 基于各向异性织物的电磁屏蔽性能仿真计算[J]. 材料导报, 2018, 32(18): 3235-3238.
[6] 畅庚榕, 刘明霞, 马飞, 徐可为. 微应变诱导各向异性硅纳米晶形成及其光学特性[J]. 材料导报, 2018, 32(18): 3104-3109.
[7] 白庆伟,麻永林,邢淑清,冯艳飞,鲍鑫宇,陈重毅. 表面脉冲电磁场处理下7A04铝合金凝固组织演变[J]. 《材料导报》期刊社, 2018, 32(12): 2021-2027.
[8] 臧剑锋, 童磊, 叶镭, 喻研. 二维原子晶体材料中的各向异性研究概述*[J]. CLDB, 2017, 31(9): 15-25.
[9] 李颖颖, 万隆, 王俊沙, 徐俊杰, 刘莹莹, 李荣辉. 温度对铁基预合金粉腐蚀泡沫化人造金刚石微粉的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 113-116.
[10] 曾 琦, 李青松, 袁 伟, 周 宁, 张克勤. 非晶无序光子晶体结构色机理及其应用[J]. 材料导报, 2017, 31(1): 43-55.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed