Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 23020218-6    https://doi.org/10.11896/cldb.23020218
  金属与金属基复合材料 |
横纵轧对低合金高强度钢夹杂物变形行为和低温韧性的影响
付璐1,2, 赵晏1,2, 任帅2, 孙智妍2, 赵英利2, 张中武3,*
1 哈尔滨工程大学烟台研究(生)院,山东 烟台 264000
2 河钢集团河钢材料技术研究院,石家庄 050000
3 哈尔滨工程大学材料科学与化学工程学院,哈尔滨 150001
Effect of Cross Rolling on Deformation Behavior of Inclusions and Low Temperature Toughness in High Strength Low Alloy Steel
FU Lu1,2, ZHAO Yan1,2, REN Shuai2, SUN Zhiyan2, ZHAO Yingli2, ZHANG Zhongwu3,*
1 Yantai Research Institute and Graduate School, Harbin Engineering University, Yantai 264000, Shandong, China
2 HBIS Materials Technology Research Institute, HBIS Group, Shijiazhuang 050000, China
3 School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
下载:  全 文 ( PDF ) ( 30736KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过纵轧和横纵轧两种不同的轧制工艺,对夹杂物的数量、尺寸、形态进行控制。利用光学显微镜(OM)对不同轧制工艺下的组织形态和晶粒尺寸进行了分析,结果表明,在变形量相同的情况下,纵轧和横纵轧对组织形态和晶粒尺寸没有明显的影响。力学性能测试结果表明,两种工艺轧制的钢板具有相同的强度,但是横纵轧的钢板冲击性能低于纵轧的钢板,在-80 ℃低温下区别更加明显。利用OM和SEM对比分析了不同截面上的夹杂物,结果表明,两种工艺下差异最大的是MnS夹杂物。横纵轧钢板中,MnS沿轧向和横向两个方向变形,在纵截面和横截面上尺寸分布接近,有利于减轻各向异性;但MnS的最大长度没有减小,大尺寸MnS的数量也没有减少,因此-80 ℃下钢板的冲击功相对较低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付璐
赵晏
任帅
孙智妍
赵英利
张中武
关键词:  夹杂物  横纵轧  低温韧性  各向异性  变形机制    
Abstract: The quantity, size and shape of inclusions in the process of thermal deformation were controlled by two different rolling processes:longitudinal rolling and cross rolling. OM was used to analyze the microstructure and grain size under different rolling processes. The results show that unidirectional rolling and cross rolling have no obvious effect on the microstructure and grain size under the same amount of deformation. The mechanical properties test results show that the steel plates rolled by the two processes have the same strength. The impact properties of cross rolled steel plates are lower than that of unidirectional rolled steel plates, but the transverse and longitudinal differences are smaller, and this phenomemon is more obvious at -80 ℃. OM, SEM were used to compare and analyze the differences of inclusions in different sections. The results show that MnS inclusion is the biggest difference between the two processes. In cross rolled steel plate, MnS deform in rolling direction and transverse direction, and the size distribution is close in longitudinal section and cross section, which is beneficial to reduce anisotropy. The maximum length of MnS does not decrease, and the number of large size MnS does not decrease, so the impact energy of steel at -80 ℃ is relatively lower.
Key words:  inclusion    cross rolling    low temperature toughness    anisotropy    deformation behavior
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TG335.1  
基金资助: 国家自然科学基金(U2141207);河钢集团有限公司资金支持项目
通讯作者:  *张中武,博士,哈尔滨工程大学教授、博士研究生导师,黑龙江省“龙江学者”讲座教授,黑龙江省杰出青年科学基金获得者,哈尔滨工程大学金属材料研究所所长。2013年6月加入哈尔滨工程大学材料科学与化学工程学院。长期从事纳米相强化钢、纳米相和层错能调控合金设计及其在舰船和核能领域的应用等研究。发表SCI论文100多篇,获授权专利40项,多次受邀出席国内外会议并发表演讲。获省部级一等奖一项、二等奖二项、三等奖一项(均排名第一)。zwzhang@hrbeu.edu.cn   
作者简介:  付璐,2014年6月于烟台大学获得工学学士学位。现为哈尔滨工程大学材料科学与化学工程学院硕士研究生,在张中武老师的指导下进行研究。主要研究领域为低合金高强钢中夹杂物的调控以及夹杂物对力学性能的影响。
引用本文:    
付璐, 赵晏, 任帅, 孙智妍, 赵英利, 张中武. 横纵轧对低合金高强度钢夹杂物变形行为和低温韧性的影响[J]. 材料导报, 2024, 38(17): 23020218-6.
FU Lu, ZHAO Yan, REN Shuai, SUN Zhiyan, ZHAO Yingli, ZHANG Zhongwu. Effect of Cross Rolling on Deformation Behavior of Inclusions and Low Temperature Toughness in High Strength Low Alloy Steel. Materials Reports, 2024, 38(17): 23020218-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020218  或          http://www.mater-rep.com/CN/Y2024/V38/I17/23020218
1 Jiao Z B, Luan J H, Zhang Z W, et al. Acta Materialia, 2013, 61(16), 5996.
2 Zhang Z W, Wei X H, Zhao G. Angang Technology, 2018(4), 1(in Chinese).
张中武, 魏兴豪, 赵刚. 鞍钢技术, 2018(4), 1.
3 Ghosh A, Das S, Chatterjee S. Materials Science and Technology, 2005, 21(3), 298.
4 Howden D. Metallurgical and Materials Transactions, 2000, 3, 31.
5 Arreola-Herrera R, Cruz-Ramirez A, Rivera-Salinas J E, et al. Theoretical & Applied Fracture Mechanics, 2018, 94, 134.
6 Yun H, Shuang K. Heat Treatment of Metals, 2015, 40(10), 36. (in Chinese)
韩赟, 邝霜. 金属热处理, 2015, 40(10), 36.
7 Yang Z R, Yan D S, Yang H J. Heat Treatment of Metals, 2020(11), 38(in Chinese).
杨志荣,闫德胜,杨怀君. 金属热处理, 2020(11), 38.
8 André L V C S. Journal of Materials Research & Technology, 2018, 7(3), 283.
9 Alexander D J. Microstructural effects on the cleavage fracture of pearitic eutectoid steel (Toughness, effective surface energy, work hardening). Ph. D. Thesis, Carnegie Mellon University, USA, 1984.
10 Stz B, Zdl B, Lu J C, et al. Engineering Failure Analysis, 2022, 131, 105860.
11 Baker T J, Kavishe F, WilsonI J. Materials Science & Technology, 1986, 2(6), 576.
12 Huang Y, Cheng G G, Wang Q M, et al. China Metallurgy, 2020, 30(6), 9(in Chinese).
黄宇, 成国光, 王启明, 等. 中国冶金, 2020, 30(6), 9.
13 Guo S, Zhu H Y, Han Y, et al. Journal of Iron and Steel Research, 2022, 34(8), 713. (in Chinese).
郭帅, 朱航宇, 韩赟, 等. 钢铁研究学报, 2022, 34(8), 713.
14 Xiong Z, Liu S, Wang X, et al. Materials Characterization, 2015, 106, 232.
15 Yang W, Yang X G, Zhang L F, et al. Steelmaking, 2013, 29(6), 8(in Chinese).
杨文, 杨小刚, 张立峰, 等. 炼钢. 2013, 29(6), 8.
16 Ghosh A, Modak P, Dutta R, et al. Materials Science & Engineering A, 2016, 654(27), 298.
17 Lu D, Li W F, Ren Y, et al. Journal of Iron and Steel Research, 2020, 32(12), 1021(in Chinese).
鲁达, 李维福, 任英, 等. 钢铁研究学报, 2020, 32(12), 1021.
18 Zheng H, Liu L H, Zhang Z W. Materials Reports, 2021, 35(13), 13168(in Chinese).
郑浩, 刘丽华, 张中武. 材料导报, 2021, 35(13), 13168.
19 Zhao Yu, Xu Songsong, Li Junpeng, et al. Materials Science & Engineering A, 2017, 691(13), 162.
20 Joseph M. Journal of Failure Analysis & Prevention, 2015, 15(2), 169.
21 Ray A, Paul S K, Jha S. Journal of Materials Engineering & Performance, 1995, 4(6), 679.
22 Yamamoto K, Yamamura H, Suwa Y. Transactions of the Iron & Steel Institute of Japan, 2011, 51(12), 1987.
[1] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[2] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[3] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[4] 王海军, 牛宇豪, 凌海涛, 乔家龙, 何飞, 仇圣桃. 无取向硅钢中微细夹杂物控制研究进展[J]. 材料导报, 2024, 38(3): 22040407-9.
[5] 俞彦飞, 王暄, 高鑫, 宁锋, 张浩鹏, 岳红彦. 基于定向冷冻技术构建的多孔材料及其应用[J]. 材料导报, 2023, 37(5): 21050074-11.
[6] 张子瑜, 刘艳芳, 李玉胜, 曹阳. 高压扭转变形诱导的非均匀微观结构演化[J]. 材料导报, 2023, 37(23): 22050212-10.
[7] 王庆娟, 党雪, 杜忠泽, 王钦仁, 何泽恩, 齐泽江. B92SiQL钢的高温流变行为及变形机制研究[J]. 材料导报, 2023, 37(21): 22040403-8.
[8] 蔡兴瑞, 万逸飞, 李翰超, 宋嘉玲, 冯志强, 曾庆丰, 关康, 刘建涛. 连续碳化硅纤维增韧陶瓷基复合材料微结构数字化建模和宏观各向异性模量预测[J]. 材料导报, 2023, 37(13): 21050041-7.
[9] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[10] 杨宇龙, 贾潇, 朱伏先, 王平. 大线能量焊接用钢粗晶热影响区针状铁素体形成过程控制技术的研究进展[J]. 材料导报, 2022, 36(5): 20060056-11.
[11] 窦学铮, 蒋立武, 宋尽霞, 赵云松. 镍基单晶高温合金力学性能各向异性的研究进展[J]. 材料导报, 2022, 36(24): 21040222-15.
[12] 周国伟, 李枝兰, 王晓娇. 应力与取向调控超薄La0.7Sr0.3MnO3薄膜各向异性的研究[J]. 材料导报, 2022, 36(19): 21020016-6.
[13] 孙建, 黄贞益, 李景辉, 王萍, 吴旭明. 基于加工硬化率的新型轻质钢动态再结晶临界条件及变形机制研究[J]. 材料导报, 2022, 36(19): 21050251-9.
[14] 常超, 张辉, 来媛, 李良, 白晓旭. FeAlNiCrMn高熵合金结构稳定性和力学性能的第一性原理计算[J]. 材料导报, 2022, 36(14): 21040230-5.
[15] 刘佳宾, 刘新灵, 李振. 粉末高温合金夹杂物引起疲劳裂纹萌生微观机理研究现状[J]. 材料导报, 2021, 35(z2): 385-390.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed