Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 21020016-6    https://doi.org/10.11896/cldb.21020016
  无机非金属及其复合材料 |
应力与取向调控超薄La0.7Sr0.3MnO3薄膜各向异性的研究
周国伟, 李枝兰, 王晓娇
山西师范大学材料科学研究院,磁性分子与磁信息材料教育部重点实验室,太原 030006
Strain and Orientation Manipulation of Magnetic Anisotropy in Ultrathin La0.7Sr0.3MnO3 Films
ZHOU Guowei, LI Zhilan, WANG Xiaojiao
Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Research Institute of Materials Science, Shanxi Normal University, Taiyuan 030006, China
下载:  全 文 ( PDF ) ( 8119KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用带有原位反射式高能电子衍射(RHEED)的脉冲激光沉积系统,分别在(001)和(110)两种取向的SrTiO3、(LaSr)(AlTa)O3、LaAlO3三种衬底上沉积厚度为13个晶胞(unit cell,u.c.)的高质量超薄La0.7Sr0.3MnO3(LSMO)薄膜。首先,采用原子力显微镜(AFM)对薄膜表面形貌进行表征;其次,通过综合物性测量系统(PPMS)对薄膜磁各向异性变化进行表征;最后,利用同步辐射软X射线吸收谱技术研究薄膜中锰的轨道占据状态。综合研究发现,无论LSMO薄膜沉积在哪一种取向的衬底上,受拉应力作用的电子均优先占据面内轨道,LSMO薄膜表现出面内易磁化特性;而受压应力作用的电子则优先占据面外轨道,LSMO薄膜表现为垂直磁各向异性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周国伟
李枝兰
王晓娇
关键词:  脉冲激光沉积系统  应力与取向  超薄LSMO薄膜  各向异性  轨道占据    
Abstract: The pulsed laser deposition system equipped with in-situ reflection high-energy electron diffraction (RHEED) was used in this work. The LSMO films (13 u.c.) were deposited on three different substrates (SrTiO3, (LaSr)(AlTa)O3, LaAlO3) with two crystalline orientations (001) and (110). The atomic force microscopy (AFM) was used to characterize the film surface morphology and roughness. The magnetic anisotropy was measured by the physical properties measurement system (PPMS). The orbital occupation of Mn ions in the LSMO film was proved by the X-ray absorption spectroscopy. In summary, no matter what substrates with orientations the LSMO films are deposited on, the electrons of Mn ions preferentially occupy the in-plane orbital and the LSMO films display the in-plane magnetic easy axis under tensile strain. In contrary, the electrons of Mn ions preferentially occupy the out-of-plane orbital and the LSMO films exhibit the out-of-plane magnetic anisotropy under compressive strain.
Key words:  pulsed laser deposition system    strain and orientation    ultrathin LSMO films    anisotropy    orbital occupation
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  O469  
  O441  
  O46  
  O47  
基金资助: 国家自然科学基金(51901118);山西师范大学研究生科技创新项目(2021XSY036)
通讯作者:  zhougw@sxnu.edu.cn   
作者简介:  周国伟,山西师范大学化学与材料科学学院副教授、硕士研究生导师。2012年山西农业大学资源与环境学院环境科学专业本科毕业,2014年山西师范大学化学与材料科学学院材料工程专业硕士毕业,2018年山西师范大学化学与材料科学学院化学专业博士毕业后留在山西师范大学工作至今。2019年1月至2019年12月在新加坡国立大学材料与科学工程专业访学一年。目前主要从事钙钛矿复杂氧化物薄膜和异质结中新奇物理现象的研究工作。发表论文30余篇,包括Materials Horizons、ACS Applied Materials & Interfaces、Physical Review B、Applied Physics Letters等。
引用本文:    
周国伟, 李枝兰, 王晓娇. 应力与取向调控超薄La0.7Sr0.3MnO3薄膜各向异性的研究[J]. 材料导报, 2022, 36(19): 21020016-6.
ZHOU Guowei, LI Zhilan, WANG Xiaojiao. Strain and Orientation Manipulation of Magnetic Anisotropy in Ultrathin La0.7Sr0.3MnO3 Films. Materials Reports, 2022, 36(19): 21020016-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020016  或          http://www.mater-rep.com/CN/Y2022/V36/I19/21020016
1 Tokura Y, Hwang H Y. Nature Materials, 2008, 7(9), 694.
2 Coey J M D, Viret M, Molnár S. Advances in Physics, 1999, 48(2), 167.
3 Pan F, Gao S, Chen C, et al. Materials Science & Engineering R-Reports, 2014, 83(1), 1.
4 Zong F Y, Huo G Y, Wang Y. Materials Reports, 2009, 23(Z1), 338 (in Chinese).
董福营, 霍国燕, 王烨. 材料导报, 2009,23(Z1), 338.
5 Warusawithana M P, Richter C, Mundy J A, et al. Nature Communications, 2013, 4(1), 2351.
6 Liao Z, Skoropata E, Freeland J W, et al. Nature Communications, 2019, 10(1), 589.
7 Schlueter C, Aruta C, Yang N, et al. Physical Review Materials, 2019, 3(9), 094406.
8 Guo J W, Wang P S, Yuan Y, et al. Physical Review B, 2018, 97(23), 235135.
9 Zhao R Y, Wu Z M, Wang M D, et al. Materials Reports A: Review Papers, 2015, 29(5), 146 (in Chinese).
赵若禺, 毋志民, 王敏娣, 等. 材料导报:综述篇, 2015, 29(5), 146.
10 Jin S, Tiefel T H, Mccormack M, et al. Science, 1994, 264(15), 413.
11 Mahesh R, Mahendiran R, Raychaudhuri A K, et al. Applied Physics Letters, 1996, 68(16), 2291.
12 Liao Z, Huijben M, Koster G, et al. APL Materials, 2014, 2(9), 1063.
13 Jin F, Gu M, Ma C, et al. Nano Letters, 2020, 20(2), 1131.
14 Majumdar S, Kooser K, Elovaara T, et al. Journal of Physics: Condensed Matter, 2013, 25(37), 376003.
15 Boschker H, Mathews M, Houwman E P, et al. Physical Review B, 2009, 79(21), 214425.
16 Liao Z, Huijben M, Zhong Z, et al. Nature Materials, 2016, 15(4), 425.
17 Ranno L, Llobet A, Tiron, R, et al. Applied Surface Science, 2002, 188(1-2), 170.
18 Zhou P, Qi Y, Yang C, et al. AIP Advances, 2016, 6(12), 1063.
19 Fina I, Marti X, Yi D, et al. Nature Communications, 2014, 10(1), 4671.
20 Martin Z, Thomas M, Martin Z, et al. Physical Review B, 2019, 99(19), 1867.
21 Aruta C, Ghiringhelli G, Tebano A, et al. Physical Review B, 2006, 73(23), 306.
22 Li X, Lindfors-Vrejoiu I, Ziese M, et al. Scientific Reports, 2017, 7(1), 40068.
23 Tebano A, Orsini A, Medaglia P G, et al. Physical Review B, 2010, 82(21), 214407.
24 Cui B, Song C, Li F, et al. Scientific Reports, 2014, 4, 4206.
25 Quan Z, Wu B, Zhang F, et al. Applied Physics Letters, 2017, 110(7), 072405.
26 Zhang J, Zhong Z, Guan X, et al. Nature Communications, 2018, 9(1), 1923.
27 Zhou G, Jiang F, Zang J, et al. ACS Applied Materials & Interfaces, 2018,10(2), 1463.
28 Zhang B, Wu L, Zheng J, et al. NPG Asia Materials, 2018, 10(9), 931.
29 Tebano A, Aruta C, Sanna S, et al. Physical Review Letters, 2008, 100 (13), 306.
30 Yi D, Flint C L, Balakrishnan P P, et al. Physical Review Letters, 2017, 119(7), 077201.
[1] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[2] 常超, 张辉, 来媛, 李良, 白晓旭. FeAlNiCrMn高熵合金结构稳定性和力学性能的第一性原理计算[J]. 材料导报, 2022, 36(14): 21040230-5.
[3] 罗涛, 马爱洁, 白海燕, 程勇博, 周宏伟. 磁诱导高取向水凝胶的构筑及功能[J]. 材料导报, 2021, 35(5): 5206-5213.
[4] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[5] 吴韶飞, 闫霆, 蒯子函, 潘卫国. 高各向异性十六酸/膨胀石墨定形相变储热材料的性能[J]. 材料导报, 2021, 35(4): 4186-4193.
[6] 黄健康, 刘玉龙, 刘光银, 杨茂鸿, 樊丁. 微纳米尺度单晶铜各向异性纳米力学分析[J]. 材料导报, 2021, 35(24): 24117-24121.
[7] 于涵, 何雄, 张孔斌, 何斌, 罗丰, 孙志刚. 锗基半导体器件的界面磁阻效应和体磁阻效应[J]. 材料导报, 2021, 35(2): 2069-2073.
[8] 孙元平, 姚毅恒, 张淑娴, 马建新, 翁赟. 竹缠绕复合材料的线膨胀系数测试[J]. 材料导报, 2020, 34(Z1): 539-541.
[9] 张建平, 胡慧瑶, 王树森, 龚曙光, 刘庭显. 正交各向异性结构的三维无网格法稳态传热模型及应用[J]. 材料导报, 2020, 34(8): 8036-8041.
[10] 雷意, 严红革, 陈吉华, 夏伟军, 苏斌, 丁天, 黄文森. 温度对ZK60镁合金细晶板材成形性能的影响[J]. 材料导报, 2020, 34(2): 2067-2071.
[11] 肖长江, 窦志强, 朱振东. 氧化铁刻蚀金刚石表面形貌的表征及形成机理[J]. 材料导报, 2020, 34(14): 14045-14050.
[12] 罗磊, 李向明, 魏岑, 王献. 基于相场模拟的倾斜共晶生长研究进展[J]. 材料导报, 2020, 34(11): 11114-11120.
[13] 郝时嘉, 陆政, 李国爱, 于娟. 高性能铝锂合金关键力学性能各向异性的影响因素及控制措施[J]. 材料导报, 2019, 33(Z2): 389-393.
[14] 刘颖, 董丽虹, 王海斗. 激光熔覆成型的各向异性表征方法研究现状[J]. 材料导报, 2019, 33(21): 3541-3546.
[15] 康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed