Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4134-4138    https://doi.org/10.11896/cldb.19100070
  金属与金属基复合材料 |
时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究
刘伟1,2, 吴远志1,2, 邓彬1,2, 刘安民1,2, 刘巍2, 孙乾2, 叶拓1,2
1 湖南工学院汽车零部件技术研究院,衡阳 421002
2 湖南工学院机械工程学院,衡阳 421002
Effect of Aging Processes on the Anisotropic Mechanical Property of 6061 Aluminum Alloy and the Related Microstructure Evolution
LIU Wei1,2, WU Yuanzhi1,2, DENG Bin1,2, LIU Anmin1,2, LIU Wei2, SUN Qian2, YE Tuo1,2
1 Research Institute of Automobile Parts Technology, Hunan Institute of Technology, Hengyang 421002, China
2 School of Mechanical and Engineering, Hunan Institute of Technology, Hengyang 421002, China
下载:  全 文 ( PDF ) ( 5805KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 采用单向拉伸试验研究了经不同时效工艺处理的6061铝合金轧制板材在轧制方向(0°)、倾斜方向(45°)和横向(90°)的力学性能各向异性。实验结果表明,轧制态6061铝合金的力学性能与热处理工艺密切相关,且表现出明显的各向异性。其中T6态6061铝合金力学性能各向异性最不明显。轧制态6061-T6铝合金有较强的立方织构{001}〈100〉和较弱的织构成分{001}〈100〉,目前采用的人工时效方法对其晶粒的显微组织和织构演化的影响不大。相对于经其他工艺处理的轧制态6061铝合金,经240 ℃高温时效处理的轧制态6061-T6铝合金位错密度大,且分布更均匀。轧制态6061-T6铝合金中明显的高密度β″析出物是其具备最高强度和最低各向异性的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘伟
吴远志
邓彬
刘安民
刘巍
孙乾
叶拓
关键词:  6061铝合金  时效  各向异性  微观组织演变    
Abstract: The effect of aging on the anisotropic mechanical properties of a commercial 6061 rolling sheet has been investigated by 0°, 45° and 90° uniaxial tensile tests. The mechanical properties of the studied alloy are strongly related to the applied heat treatment state and loading direction, exhibiting visible anisotropy. The T6 treated alloy exhibits the lowest anisotropy as compared with the other treated alloys. In addition,the studied alloys has a strong cube {001} 〈100〉 and a much weaker {001} 〈100〉 components. The artificial aging utilized in present work has little influence on the grain microstructure and texture evolution. The dislocation distributions of T6 and HTA 240 ℃ alloys are denser and more homogeneous as compared with those in other treated alloys, and the visibly higher density of β″ precipitates in T6 alloy is the main reason for the highest strength and the lowest anisotropy.
Key words:  6061 aluminum alloy    aging    anisotropy    microstructure evolution
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(51501061);国家级大学生创新创业训练计划平台项目(S202011528013);湖南省自然科学基金(2019JJ30009;2019JJ50110);湖南省教育厅科学研究项目(20B116);衡阳市科技计划项目(2020jh012668;2019yj011174)
通讯作者:  hnuyetuo@163.com   
作者简介:  刘伟,湖南工学院,讲师。2013年6月毕业于湘潭大学,获材料科学与工程专业硕士学位。2015年10月入职湖南工学院任教至今,主要从事铝、镁等轻金属材料高温和低温变形行为、材料微观组织的演变与分析等方面的研究。在Int. J. Solids Struct.、Comput. Mater. Sci.、《材料科学与工程学报》等国内外学术刊物上发表科研论文7篇,其中SCI收录4篇、EI收录1篇。申请专利7项,其中授权4项。
叶拓,湖南工学院,讲师。2016年10月毕业于湖南大学,获得机械工程博士学位。2017年1月入职湖南工学院任教至今,主要从事金属材料高温变形机制、材料塑性成形以及金属材料微观组织表征等方面的研究。在Materials Science and Engineering A、International Journal of Impact Engineering、Vacuum、Metals、《中国有色金属学报》《材料研究学报》《中国机械工程学报》等国内外知名学术刊物上发表相关论文10余篇,其中SCI收录4篇,EI收录6篇。
引用本文:    
刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
LIU Wei, WU Yuanzhi, DENG Bin, LIU Anmin, LIU Wei, SUN Qian, YE Tuo. Effect of Aging Processes on the Anisotropic Mechanical Property of 6061 Aluminum Alloy and the Related Microstructure Evolution. Materials Reports, 2021, 35(4): 4134-4138.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100070  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4134
1 Gao Z, Feng J G, Wang Z J,et al. Metals, 2019, 9(6), 672.
2 Zhou T G, Chen T T, Su X, et al. Materials Reports B:Research Papers, 2018, 31(8), 17(in Chinese).
周天国, 陈田田, 苏鑫, 等.材料导报:研究篇, 2018, 31(8), 17.
3 Ye T, Wu Y Z, Liu W, et al.Metals, 2019, 9(6), 629.
4 Bobruk E V, Kazykhanov V U, Murashkin M Y, et al.Advanced Engineering Materials, 2015, 17(12), 1733.
5 Ren Z W, Luo B H, Zheng Y Y, et al. Materials Reports B:Research Papers, 2019, 33(9), 3027(in Chinese).
任智炜, 罗兵辉, 郑亚亚, 等.材料导报:研究篇, 2019, 33(9), 3072.
6 Cabibbo M, Santecchia E, Mengucci P, et al.Materials Science and Engineering: A, 2018, 716(14), 107.
7 Vilamosa V, Clausen A H, Børvik T, et al.International Journal of Impact Engineering, 2015, 86, 223.
8 Viceré A, Roventi G, Paoletti C, et al.Metals, 2019, 9(4), 408.
9 Wang X F, Guo M X, Chapuis A, et al.Materials Science and Enginee-ring: A, 2015, 644(17), 137.
10 Mishra S, Kulkarni K, Gurao N P.Materials and Design, 2015, 87(15), 507.
11 Krishna N N, Ashfaq M, Susila P, et al.Materials Characterization, 2015, 107, 302.
12 Debih A, Ouakdi E H.International Journal of Materials Research, 2018, 109(1), 34.
13 Barnwal V K, Raghavan R, Tewari A, et al.Materials Science and Engineering: A, 2017, 679, 56.
14 Yang Y B, Xie Z P, Zhang Z M, et al.Materials Science and Enginee-ring: A, 2014, 615(6), 183.
15 Jin S X, Ngai T, Zhang G G, et al.Materials Science and Engineering: A, 2018, 724(2), 53.
16 Buchanan K, Colas K, Ribis J, et al.Acta Materialia, 2017, 132, 209.
17 Aruga Y, Kim S N, Kozuka M, et al.Materials Science and Engineering: A, 2018, 718(7), 371.
18 Osten J, Milkereit B, Schick C, et al.Materials, 2015, 8, 2830.
19 Liu C H, Lai Y X, Chen J H,et al. Scripta Materialia, 2016, 115(7), 150.
20 Gracio J J, Barlat F, Rauch E F, et al.International Journal of Plasticity, 2004, 20(3), 427.
21 Shen F, Yi D, Wang B, et al.Materials Science and Engineering: A, 2016, 675(15), 386.
22 Miao W F, Laughlin D E.Journal of Materials Science Letters,2000, 19(3), 201.
23 Murayama M, Hono K, Miao W F, et al.Metallurgical and Materials Transactions A, 2001, 32(2), 239.
24 Esmaeili S, Wang X, Lloyd D J, et al.Metallurgical and Materials Tran-sactions A, 2003, 34, 751.
25 Zhang L, He H, Li S K,et al. Vacuum, 2018, 155, 604.
26 Li H, Pan D Z, Wang Z X, et al.Acta Metallurgica Sinica, 2010, 46(4), 494(in Chinese).
李海, 潘道召, 王芝秀, 等.金属学报, 2010, 46(4), 494.
27 Chrominski W, Wenner S, Marioara C D, et al.Materials Science and Engineering: A, 2016, 669, 447.
[1] 吴韶飞, 闫霆, 蒯子函, 潘卫国. 高各向异性十六酸/膨胀石墨定形相变储热材料的性能[J]. 材料导报, 2021, 35(4): 4186-4193.
[2] 于涵, 何雄, 张孔斌, 何斌, 罗丰, 孙志刚. 锗基半导体器件的界面磁阻效应和体磁阻效应[J]. 材料导报, 2021, 35(2): 2069-2073.
[3] 宋韦韦, 罗顺成, 韩兆玉, 晁代义, 方清万, 吕正风, 程仁策. 7050铝合金铸锭中Al3Zr的析出情况对锻板性能的影响[J]. 材料导报, 2020, 34(Z1): 334-337.
[4] 孙元平, 姚毅恒, 张淑娴, 马建新, 翁赟. 竹缠绕复合材料的线膨胀系数测试[J]. 材料导报, 2020, 34(Z1): 539-541.
[5] 张建平, 胡慧瑶, 王树森, 龚曙光, 刘庭显. 正交各向异性结构的三维无网格法稳态传热模型及应用[J]. 材料导报, 2020, 34(8): 8036-8041.
[6] 李振团, 柴锋, 罗小兵, 张正延, 杨才福, 苏航. 时效温度对Cu沉淀强化超高强海工钢力学性能的影响[J]. 材料导报, 2020, 34(6): 6132-6137.
[7] 张帅, 李全安, 朱宏喜, 陈晓亚, 王颂博, 关海昆. 热处理对Mg-11Gd-3Y-0.6Ca-0.5Zr合金显微组织和腐蚀行为的影响[J]. 材料导报, 2020, 34(20): 20070-20075.
[8] 雷意, 严红革, 陈吉华, 夏伟军, 苏斌, 丁天, 黄文森. 温度对ZK60镁合金细晶板材成形性能的影响[J]. 材料导报, 2020, 34(2): 2067-2071.
[9] 瞿猛, 唐建国, 叶凌英, 李承波, 李建湘, 周旺, 邓运来. 过时效与添加Zr对Al-Zn-Mg合金耐腐蚀性能影响的对比[J]. 材料导报, 2020, 34(2): 2083-2087.
[10] 肖长江, 窦志强, 朱振东. 氧化铁刻蚀金刚石表面形貌的表征及形成机理[J]. 材料导报, 2020, 34(14): 14045-14050.
[11] 陈宇强, 张文涛, 张浩, 潘素平, 李运湘, 李宁波, 欧陈贵, 伏明珠, 阳铭广. T6I6处理对Al-Si-Mg-Cu铸铝时效析出及疲劳行为的影响[J]. 材料导报, 2020, 34(14): 14122-14128.
[12] 罗磊, 李向明, 魏岑, 王献. 基于相场模拟的倾斜共晶生长研究进展[J]. 材料导报, 2020, 34(11): 11114-11120.
[13] 马涛, 李慧蓉, 高建新, 宋宏伟, 李欣, 李运刚. 合金元素及时效处理对Fe-Mn-Al-C低密度钢中κ-碳化物的影响特性综述[J]. 材料导报, 2020, 34(11): 11153-11161.
[14] 倪嘉, 柴皓, 史昆, 赵军, 刘时兵, 刘鸿羽, 崔亚迪. 颗粒增强钛基复合材料的研究进展[J]. 材料导报, 2019, 33(Z2): 369-373.
[15] 郝时嘉, 陆政, 李国爱, 于娟. 高性能铝锂合金关键力学性能各向异性的影响因素及控制措施[J]. 材料导报, 2019, 33(Z2): 389-393.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed