Please wait a minute...
材料导报  2020, Vol. 34 Issue (14): 14045-14050    https://doi.org/10.11896/cldb.19070180
  无机非金属及其复合材料 |
氧化铁刻蚀金刚石表面形貌的表征及形成机理
肖长江, 窦志强, 朱振东
河南工业大学材料科学与工程学院, 郑州 450001
Characterization and Formation Mechanism of Surface Morphology on Diamond Etched by Fe2O3 Powder
XIAO Changjiang, DOU Zhiqiang, ZHU Zhendong
School of Material Science & Engineering, Henan University of Technology, Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 14118KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了系统研究不同温度下氧化铁刻蚀金刚石表面的形貌及形成机理,以人造金刚石为刻蚀材料,以氧化铁作为刻蚀剂,先将金刚石洗净,然后将金刚石与氧化铁以质量比为1∶5混合均匀、压实,用氮气作为保护气氛,在650~850 ℃下用氧化铁刻蚀金刚石单晶表面。再用扫描电子显微镜及其3D重建技术、热重分析、X射线衍射和拉曼光谱等方法对刻蚀后金刚石单晶不同晶面的表面形貌、表面粗糙度、物相组成和刻蚀机理进行了表征与分析。首次用3D重建技术对刻蚀后金刚石不同晶面的形貌进行了立体观测,用铜基结合剂金刚石试样的抗弯强度来评估刻蚀对金刚石与结合剂间结合力的影响。结果表明:氧化铁在不同温度下均能有效刻蚀金刚石单晶,且对不同晶面的刻蚀程度和形貌是各向异性的;当刻蚀温度为650 ℃时,氧化铁对金刚石单晶已有一定的刻蚀;随温度的升高,刻蚀加剧;在相同条件下,金刚石单晶的{100}面刻蚀程度比{111}面严重,{100}面表面粗糙度Sa从0.84 μm升至3.73 μm,{111}面表面粗糙度Sa从0.77 μm升高至2.01 μm。刻蚀后,金刚石单晶的不同晶面形貌由金刚石本身的原子排列决定,随着刻蚀温度从650 ℃升至850 ℃,金刚石{100}面刻蚀坑从四边形变为八边形,{111}面由轻微的点状变为三棱锥形凸起。氧化铁对金刚石单晶的刻蚀机理是金刚石的氧化过程。刻蚀后,铜基结合剂金刚石试样的抗弯强度有较大的提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖长江
窦志强
朱振东
关键词:  金刚石单晶  氧化铁  温度  各向异性刻蚀  表面粗糙度  机理    
Abstract: In order to systematically study the characterization and formation mechanism of surface morphology on diamond etched by Fe2O3 powder at different temperatures, using synthetic diamond as etching material and Fe2O3 powder as etching agent, the diamond was washed first, then Fe2O3 was mixed with diamond in a weight ratio of 5∶1 by milling in a ball-mill and tightly compacted, finally, the surface of diamond single crystal was etched by Fe2O3 at 650—850 ℃ with nitrogen as protective atmosphere respectively. The surface morphology, surface roughness, phase composition and etching mechanism of etched diamond single crystals were characterized and analyzed by means of scanning electron microscope and 3D reconstruction, thermogravimetric analysis, X-ray diffraction and Raman spectroscopy. Moreover, the morphology of different crystal planes of etched diamond was observed by 3D rescontruction technique for the first time, and the bending strength of Cu-matrix bonded diamond sample was prepared to evaluate the effect of etching on the bonding force between diamond and metal matrix. The results show that Fe2O3 can etch diamond single crystal well at different temperatures, and the degree and morphology of etching on different crystal planes are anisotropic, and when the etching temperature is 650 ℃, Fe2O3 has etched diamond single crystal to a certain extent. The etching rate of {100} and {111} plane increases as the temperature increasing,and that {100} plane was etched more severely than {111} plane under the same conditions.The surface roughness Sa of {100} plane increases from 0.84 μm to 3.73 μm, while the surface roughness Sa of {111} plane increases from 0.77 μm to 2.01 μm. After etching, the surface morphology of the etched diamond reflect the arrangement of carbon atoms on the corresponding plane. When the etching temperature rises from 650 ℃ to 850 ℃, the etched pit of {100} plane changes from quadrilateral to octagonal, and the {111} plane is slightly punctate into a triangular conical bulge. The mechanism of Fe2O3 etching diamond single crystal is the oxidation process of diamond. Furthermore, after etching, the flexural strength of Cu-matrix bonded diamond sample is greatly improved.
Key words:  diamond single crystal    Fe2O3    temperature    anisotropy etching    surface roughness    mechanism
               出版日期:  2020-07-25      发布日期:  2020-07-14
ZTFLH:  TG732  
基金资助: 郑州市科技局自然科学项目(20150246)
作者简介:  肖长江,河南工业大学材料学院副教授、硕士研究生导师。1994年7月本科毕业于郑州大学材料学院,2007年3月在中国科学院物理研究所凝聚态物理专业取得博士学位,主要从事功能材料和高压合成新材料研究。近年来,在功能材料和超硬材料领域相关期刊发表论文30余篇,包括Materials Chemistry and Physics、Physica Status Solidis A、Journal of Physics and Che-mistry of Solids、International Journal of Thermophysics、International Journal of Materials ResearchJournal of Materials Processing Technology、Surface Engineering等。
引用本文:    
肖长江, 窦志强, 朱振东. 氧化铁刻蚀金刚石表面形貌的表征及形成机理[J]. 材料导报, 2020, 34(14): 14045-14050.
XIAO Changjiang, DOU Zhiqiang, ZHU Zhendong. Characterization and Formation Mechanism of Surface Morphology on Diamond Etched by Fe2O3 Powder. Materials Reports, 2020, 34(14): 14045-14050.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070180  或          http://www.mater-rep.com/CN/Y2020/V34/I14/14045
1 Zhu X Y, Kwok S Y, Yuen M F, et al. Journal of Materials Science, 2015, 50(23), 7800.
2 Scorsone E, Gattout N, Rousseau L, et al. Diamond and Related Mate-rials, 2017, 76, 31.
3 Khanaliloo B, Mitchell M, Hryciw A C, et al. Nano Letters, 2015, 15(8), 5131.
4 Li Y Y, Wan L, Wang J S, et al. Materials Reports B: Research Papers, 2017, 31(7), 116(in Chinese).
李颖颖, 万隆, 王俊沙, 等. 材料导报:研究篇, 2017, 31(7),116.
5 Mehedi H A, Arnault J C, Eon D, et al. Carbon, 2013, 59(4), 448.
6 Mehedi H A, Hebert C, Ruffinatto S, et al. Nanotechnology, 2012, 23(5), 455302.
7 Li L Y, Chen X, Zhang W, et al. International Journal of Refractory Metals and Hard Materials, 2018, 71, 129.
8 Tsubouchi N, Mokuno Y, Shikata S. Diamond & Related Materials, 2016, 63(10), 43.
9 Ichikawa K, Kodama H, Suzuki K, et al. Thin Solid Films, 2016, 600(1), 142.
10 Kuroshima H, Makino T, Yamasaki S, et al. Applied Surface Science, 2017, 422, 452.
11 Wang J S, Wan L, Chen J, et al. Journal of Materials Science, 2017, 52(2), 709.
12 Wang J S, Wan L, Chen J, et al. Applied Surface Science, 2015, 346, 388.
13 Wang J S, Wan L, Chen J, et al. Diamond & Related Materials, 2016, 66, 206.
14 Mul G, Kapteijn F, Doornkamp C, et al. Journal of Catalysis, 1998, 179(1), 258.
15 Hisao N. Wang S L. Artificial Crystal, 1981, 9(3), 34(in Chinese).
Hisao N, 王诗麟. 人工晶体, 1981, 9(3), 34.
16 Chen H L, Kang G W, Ren W W. Application Research of Computers, 2008, 10(2), 498(in Chinese).
陈亨利, 康戈文, 任文伟. 计算机应用研究, 2008, 10(2), 498.
17 Li H S, Qi Y X, Li M S. Diamond & Abrasives Engineering, 2008, 167(5), 7(in Chinese).
李和胜, 亓永新, 李木森. 金刚石与磨料磨具工程, 2008, 167(5), 7.
18 Wang J S. Study on etching of synthetic diamond crystallites by iron group metals and iron-group metal salts. Ph.D. Thesis, Henan University, China, 2016.
王俊沙. 铁族金属及其盐对人造金刚石单晶腐蚀研究.博士学位论文, 湖南大学, 2016.
19 Smirnov W, Hees J J, Brink D,et al. Applied Physics Letters, 2010, 97, 073117
20 Veres M, Tóth S, Perevedentseva E, et al. Raman Spectroscopy of Uncd Grain Boundaries, NATO Security through Science Series, Germany, 2009.
21 Chen J, Wan L, Wang J S, et al. Journal of Synthetic Crystals, 2015, 44(6), 31(in Chinese).
陈静, 万隆, 王俊沙, 等. 人工晶体学报, 2015, 44(6), 31.
22 Luo X, Jean R C. Nuclear Engineering & Design, 2004, 227(3), 273.
[1] 张莉. 碳纳米管的吸附性能及对水中污染物的吸附:综述[J]. 材料导报, 2020, 34(Z1): 72-77.
[2] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[3] 苏岳威, 张宁, 吕宪俊, 王俊祥. 水玻璃模数对矿渣基胶凝材料水化特性及动力学的影响[J]. 材料导报, 2020, 34(Z1): 271-276.
[4] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[5] 刘凡, 赵晓明. 聚噻吩及其衍生物PEDOT在吸波领域的应用现状[J]. 材料导报, 2020, 34(Z1): 507-510.
[6] 闫敬明, 黎平, 左孝青, 周芸, 罗晓旭. Al-Ti-B晶粒细化剂研究进展:细化机理及第二相控制[J]. 材料导报, 2020, 34(9): 9152-9157.
[7] 戈雪良, 陆采荣, 梅国兴. 降温速率对混凝土冻结应力的影响及机理研究[J]. 材料导报, 2020, 34(8): 8051-8057.
[8] 谢锐, 吕铮, 卢晨阳, 王晴, 徐世海, 刘春明. 热等静压温度对14Cr-ODS钢显微组织及力学性能的影响[J]. 材料导报, 2020, 34(8): 8141-8148.
[9] 浦文婧, 芦伟, 谢凯, 郑春满. 宽温型锂离子电池有机电解液的研究进展[J]. 材料导报, 2020, 34(7): 7036-7044.
[10] 肖华强, 陈禹伽, 陈维平, 何佳容, 赵思皓. 材料在铝液中熔蚀-磨损行为的研究进展[J]. 材料导报, 2020, 34(7): 7123-7129.
[11] 谢旭豪, 许胜超, 徐志勇, 赵文波. 硫醇类化合物合成工艺与方法[J]. 材料导报, 2020, 34(7): 7168-7176.
[12] 林铁贵, 张玉芬. 晶格畸变对VO2相变温度的影响[J]. 材料导报, 2020, 34(6): 6057-6061.
[13] 童灯亮, 易幼平, 黄始全, 何海林, 郭万富, 王并乡. 变形温度对2A14铝合金组织与力学性能的影响[J]. 材料导报, 2020, 34(6): 6100-6104.
[14] 李振团, 柴锋, 罗小兵, 张正延, 杨才福, 苏航. 时效温度对Cu沉淀强化超高强海工钢力学性能的影响[J]. 材料导报, 2020, 34(6): 6132-6137.
[15] 何正文, 田红, 黄章俊, 胡章茂, 刘威. 基于量子化学理论的热解温度对木质素二聚体热解产物分布的影响[J]. 材料导报, 2020, 34(6): 6180-6185.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed