Please wait a minute...
材料导报  2020, Vol. 34 Issue (7): 7168-7176    https://doi.org/10.11896/cldb.19030050
  高分子与聚合物基复合材料 |
硫醇类化合物合成工艺与方法
谢旭豪, 许胜超, 徐志勇, 赵文波
昆明理工大学化学工程学院,昆明 650500
Synthesis Technique and Methods of Mercaptan Compounds
XIE Xuhao, XU Shengchao, XU Zhiyong, ZHAO Wenbo
Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
下载:  全 文 ( PDF ) ( 3342KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硫醇类化合物作为有机合成中间体和精细化工品在医药、农药、电化学、有机合成领域被广泛应用。在我国,大多数硫醇在市场上供不应求,依赖进口,且许多硫醇(如甲硫醇、叔丁基硫醇、2-巯基苯并噻唑等)的合成技术储备不足。因此,开展硫醇合成的研究十分重要。
   传统的硫醇合成工艺与方法大多存在三废多、流程长、产率低等缺陷;且硫源单一,以化学性质活泼的硫脲为主。此外,许多合成工艺与方法存在反应歧视,不具备普适性。催化科学的崛起和精细有机合成方法与理论的完善为解决这些问题提供了理论依据。
   以γ-Al2O3为载体,碱金属盐掺杂的过渡金属氧化物大幅提高了硫化氢与醇合成硫醇工艺的收率;相转移催化剂的诞生降低了卤代烃合成硫醇工艺的能耗和生产成本;诸多硫代试剂和硫转移剂作硫源的出现及其硫化过程的提出突破了许多高附加值硫醇合成的技术瓶颈,催生了大批适用范围广、官能团定向选择性好、硫醇收率高的合成工艺与方法,如催化偶联、P2S5介导等反应。
   本文回顾了近年来硫醇合成工艺和方法的新发展、新状况,将合成反应按底物与硫源分类,并从工艺条件、催化体系、反应机理、硫醇的最终产率等方面对各工艺和方法进行了阐述;重点介绍了以H2S为硫源的醇、卤代烃和合成气工艺,分析了它们的优缺点;指出了对各合成工艺和方法催化体系的优化和适用范围的拓宽研究是主要焦点也是难点,利用工业废气H2S及附加值低的含硫有机化合物如硫醚、二硫化物为硫源合成硫醇是今后研究的重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢旭豪
许胜超
徐志勇
赵文波
关键词:  硫醇  硫化氢    卤代烃  催化机理    
Abstract: Mercaptan compounds are widely used as organic synthesis intermediates and fine chemicals in the fields of medicine, pesticides, electrochemistry, and organic synthesis. In China, mercaptan are in short supply and depend on import, as well as many mercaptan synthetic technology are immaturity, such as methyl mercaptan, t-butyl mercaptan 2-mercaptobenzothiazole. Therefore, the research of mercaptan synthesis is very important.
Traditional mercaptan synthesis technique and methods have many defects, such as three wastes, long process, low yield; and sulfur source is single, mainly chemically active thiourea; in addition, many synthetic technique and methods don’t have universal applicability. The rise of ca-talytic science and the improvement of fine organic synthesis methods and theories provide a theoretical basis for solving these problems.
With γ-Al2O3 as the carrier, transition metal oxides doped with alkali metal salt greatly increased the yield of mercaptan from hydrogen sulfide and alcohol synthesis technique; the birth of phase transfer catalyst reduced the energy consumption and production cost of halogenated hydrocarbon synthesis mercaptan technique; the discovery of many sulfur reagents and sulfur transfer reagents have broken through technical bottlenecks of many high value-added mercaptan synthesis, which has led to a large number of synthetic technique and methods have wide application range, good functional group orientation selectivity and high mercaptan yield, such as catalytic coupling, P2S5 mediated reactions.
This article reviews the new developments of mercaptan synthesis in recent years. The reaction for synthesizing mercaptans is classified according to the reaction substrate and the sulfur source. Each technique is elaborated from the following aspects: the technique conditions, the catalytic system, the catalytic mechanism, and the final yield of the mercaptan. These technique such as alcohol synthesis, halogenated hydrocarbons synthesis, and syngas synthesis all using H2S as the sulfur source are highlighted. The advantages and disadvantages of each synthesis technique are analyzed. Finally, it points out that the optimization of catalytic systems and the widening of application scope of the va-rious techniquees are the main focus and the difficulty. The synthesis of mercaptans using industrial waste gas H2S and low value-added sulfur-containing compounds such as thioethers and disulfides as sulfur sources is an immportant research direction in the future.
Key words:  mercaptan    hydrogen sulfide    alcohol    halogenated hydrocarbons    catalytic mechanism
                    发布日期:  2020-04-10
ZTFLH:  O6-1  
基金资助: 国家自然科学基金(21666011)
通讯作者:  wenshuixing@126.com   
作者简介:  谢旭豪,2017年6月毕业于湖南理工学院,获工学学士学位。现为昆明理工大学化学工程学院硕士研究生,在赵文波教授的指导下进行研究。目前主要研究方向为H2S废气的捕集与综合利用。
赵文波,昆明理工大学化学工程学院教授,博士生导师,云南省首批“万人计划”青年拔尖人才。2009年在中科院煤化所获博士学位。主要从事酸性气体捕集与利用;相变溶剂的分子设计以及绿色催化合成方面的科研工作。作为项目负责人,主持国家自然科学基金项目2项,省自然科学基金2项,教育部新教师联合基金1项,国家重点实验室开放基金2项,省教育厅重点项目1项。以第一或通讯作者身份发表论文30余篇,其中SCI、EI收录20余篇,授权专利10余项。
引用本文:    
谢旭豪, 许胜超, 徐志勇, 赵文波. 硫醇类化合物合成工艺与方法[J]. 材料导报, 2020, 34(7): 7168-7176.
XIE Xuhao, XU Shengchao, XU Zhiyong, ZHAO Wenbo. Synthesis Technique and Methods of Mercaptan Compounds. Materials Reports, 2020, 34(7): 7168-7176.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030050  或          http://www.mater-rep.com/CN/Y2020/V34/I7/7168
1Pashigreva A V, Kondratieva E, Bermejo-Deval R, et al. Journal of Catalysis, 2017, 345, 308.
2 Lamonier C, Lamonier J F, Aellach B, et al. Catalysis Today, 2011, 164(1), 124.
3 Tian Y, Hu Y L, Mu C Y, et al. Chemical Engineer, 2010(4), 62(in Chinese).
田勇, 胡永玲, 穆传义, 等.化学工程师, 2010(4), 62.
4 Sheepwash E E, Rowntree P A, Schwan A L. Journal of Labelled Compounds & Radiopharmaceuticals, 2008, 51(12), 391.
5 Baltrusaitis J, Bucˇko T, Michaels W, et al. Applied Catalysis B Environmental, 2016, 187, 195.
6 Xiao G, Ma C, Xing D, et al. Organic Letters, 2016, 18(23), 6086.
7 Yatam S, Gundla R, Jadav S S, et al. Journal of Molecular Structure, 2018, 1159, 193.
8 Hamid A M A, Shehta W. Journal of the Iranian Chemical Society, 2018, 15(12), 2771.
9 Mioc M, Avram S, Bercean V, et al. Frontiers in Chemistry, DOI: 10.3389/fchem.2018.00373.
10 Shao Y D, Wang X H, Zhang M J, et al. Journal of Hainan Normal University (Natural Science), 2015 (1), 52(in Chinese).
邵艳东, 王向辉, 张美娟, 等. 海南师范大学学报(自然科学版), 2015 (1), 52.
11 Ziolek M, Kujawa J, Saur O, et al. Journal of Physical Chemistry, 1993, 97(38), 9761.
12 Bermejodeval R, Walter R M H, Gutiérrez O Y, et al. Catalysis Science & Technology, 2017, 7(19), 4437.
13 Zhang Y, Chen S, Wu M, et al. Catalysis Communications, 2012, 22(18), 48.
14 Mashkina A V, Khairulina L N. Kinetics & Catalysis, 2002, 43(5), 684.
15 Mashkina A V. Petroleum Chemistry, 2006, 46(1), 28.
16 Ziolek M, Czyzniewska J, Kujawa J, et al. Microporous & Mesoporous Materials, 1998, 23(1-2), 45.
17 Calvino-Casilda V, Martin-Aranda R, Sobczak I, et al. Applied Catalysis A General, 2006, 303(1), 121.
18 Trejda M, Kujawa J, Ziolek M. Catalysis Letters, 2006, 108(3-4), 141.
19 Khaksar S A M, Zivdar M, Rahimi R. Journal of Natural Gas Science and Engineering, 2019, 61, 97.
20 Bandgar B P, Sadavarte V S. Synlett, 2000, 6, 908.
21 Wang W, Li Y, Zhang X, et al. Catalysis Communications, 2015, 69(7), 104.
22 Schoenauer S, Schieberle P. Journal of Agricultural and Food Chemistry, 2016, 64(19), 3849.
23 Schoenauer S, Schieberle P. Journal of Agricultural and Food Chemistry, 2018, 66(16), 4189.
24 Schoenauer S, Buergy A, Kreissl J, et al. Journal of Agricultural and Food Chemistry, 2019, 67(9), 2598.
25 Jha P, Mondal U, Gogoi D, et al. Journal of Molecular Catalysis A Chemical, 2016, 418-419, 30.
26 Maity S K, Pradhan N C, Patwardhan A V. Journal of Molecular Catalysis A Chemical, 2006, 250(1-2), 114.
27 Maity S K, Sen S, Pradhan N C. Chemical Engineering Science, 2009, 64(21), 4365.
28 Sen S, Pradhan N C, Patwardhan A V. Asia-Pacific Journal of Chemical Engineering, 2011, 6(2), 257.
29 Xu H. Liaoning Chemical Industry, 2007, 36(9), 589(in Chinese).
许汉. 辽宁化工, 2007, 36(9), 589.
30 Zhang Y D, Pan K L, Liang Z Y. Journal of Zhengzhou University (Engineering Science), 2012, 33(2), 44(in Chinese).
章亚东, 潘开林, 梁政勇. 郑州大学学报(工学版), 2012, 33(2), 44.
31 Li H, Guo F, Zhao L, et al. Chemical Reagents, 2009, 31(3), 221(in Chinese).
李华, 郭峰, 赵蕾, 等. 化学试剂, 2009, 31(3), 221.
32 Xing J W, Zhang Y D, Wang Z X. Chemical Industry and Engineering Progress, 2010, 29(1), 140(in Chinese).
邢军伟, 章亚东, 王振兴. 化工进展, 2010, 29(1), 140.
33 Liang Z Y, Zhang Y D, Zhang J. Journal of Chemical Engineering of Chinese Universities, 2011, 25(4), 627(in Chinese).
梁政勇, 章亚东, 张剑. 高校化学工程学报, 2011, 25(4), 627.
34 Taniguchi N. Synlett, 2005, 11, 1687.
35 Jiang Y, Qin Y, Xie S, et al. Organic Letters, 2009, 11(22), 5250.
36 Yi J, Fu Y, Xiao B, et al. Tetrahedron Letters, 2011, 52(2), 205.
37 Shu Q, Xie K, Qi J. Chinese Journal of Chemistry, 2010, 28(8), 1441.
38 Bandgar B P, Pawar S B. Journal of Chemical Research, 1999, 30(9), 212.
39 Hun J, Fox M A. Journal of Organic Chemistry, 1999, 64(13), 4959.
40 Mehdid M A, Djafri A, Roussel C, et al. Molecules, 2009, 14(11), 4634.
41 Rábai J, Menczinger B, Nemes A, et al. SynOpen, 2018, 2(1), 64.
42 Zhang B, Taylor S H, Hutchings G J. Catalysis Letters, 2003, 91(3-4), 181.
43 Wang Q, Chen A P, Xie C F, et al. Acta Chimica Sinica, 2004, 62(23), 2297(in Chinese).
王琪, 陈爱平, 谢春芳, 等. 化学学报, 2004, 62(23), 2297.
44 Chen A P, Hao Y J, Wang Q, et al. Petrochemical Technology, 2007, 36(10), 990(in Chinese).
陈爱平, 郝影娟, 王琪, 等. 石油化工, 2007, 36(10), 990.
45 Chen A, Wang Q, Li Q, et al. Journal of Molecular Catalysis A Chemical, 2008, 283(1), 69.
46 Cordova A, Blanchard P, Lancelot C, et al. ACS Catalysis, 2015, 5(5), 2966.
47 Cordova A, Blanchard P, Salembier H, et al. Catalysis Today, 2017, 292, 143.
48 Wang Q, Lu J, Chen Y Z, et al. Petrochemical Technology, 2014, 43(9), 1014(in Chinese).
王琪, 鲁骥, 陈亚中, 等. 石油化工, 2014, 43(9), 1014.
49 Huang S, He S, Deng L, et al. Procedia Engineering, 2015, 102, 684.
50 Georges F, Patrice B, Karine S, et al. U.S. patent application, US20180230093, 2018.
51 Gutiérrez O Y, Kaufmann C, Lercher J A. ACS Catalysis, 2011, 1(11), 1595.
52 Gutiérrez O Y, Kaufmann C, Hrabar A, et al. Journal of Catalysis, 2011, 280(2), 264.
53 Gutiérrez O Y, Zhong L, Zhu Y, et al. ChemCatChem, 2013, 5(11), 3249.
54 Gutiérrez O Y, Christooph K, Lercher J A. ChemCatChem, 2011, 3(9), 1480.
55 Wang W, Zhang X, Xia Z, et al. Catalysis Letters, 2015, 69(7), 1.
56 Barrault J, Boulinguiez M, Forquy C, et al. Applied Catalysis, 1988, 33(5), 309.
57 Tian Y, Xue L M, Li J L, et al. Chemistry and Adhesion, 2003 (2), 66(in Chinese).
田勇, 薛丽梅, 李嘉麟, 等. 化学与粘合, 2003 (2), 66.
58 Hu Y L, Zhang C R, Tian Y, et al. Chemical Industry and Engineering Progress, 2008, 27(5), 720(in Chinese).
胡永玲, 张春荣, 田勇, 等. 化工进展, 2008, 27(5), 720.
59 Su H L. World Sci-Tech R & D, 2007, 29(6), 11(in Chinese).
苏海兰. 世界科技研究与发展, 2007, 29(6), 11.
60 Zhang B H, Zhang Z K, Li L L, et al. Chemical Industry and Enginee-ring Progress, 2014, 33(2), 400(in Chinese).
张斌浩, 张泽凯, 李林林, 等. 化工进展, 2014, 33(2), 400.
61 Mashkina A V, Khairulina L N. Kinetics & Catalysis, 2002, 43(2), 261.
62 Chen S, Zhang Y, Wu M, et al. Applied Catalysis A General, 2012, 431-432(29), 151.
63 Chen S, Wang W, Zhang Y, et al. Journal of Molecular Catalysis A Chemical, 2012, 365, 60.
64 Maurya C, Gupta P. Synlett, 2017, 28(13), 1649.
65 Maurya C K, Mazumder A, Gupta P K. Beilstein Journal of Organic Chemistry, 2017, 13(1), 1184.
66 Liu X, Zhang S B, Dong Z B. European Journal of Organic Chemistry, 2018, 2018(39), 5406.
[1] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[2] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[3] 郭增革, 张斌, 姜兆辉, 贾曌, 丁作伟, 程博闻, 李鑫. 压力流场中含炭黑聚对苯二甲酸乙二醇酯熔体的流变特性[J]. 材料导报, 2020, 34(2): 2159-2162.
[4] 李焕焕, 张东东, 许子昂, 董瑶, 赵义平, 陈莉. 荧光碳点改性无纺布的制备及在汞(Ⅱ)检测中的应用[J]. 材料导报, 2020, 34(2): 2163-2168.
[5] 车春霞, 蔡小霞, 温翯, 苟尕莲, 薛文利, 韩伟, 梁玉龙, 张峰, 景喜林. 液相法制备活性氧化铝粉体的研究现状[J]. 材料导报, 2019, 33(Z2): 147-149.
[6] 李志航, 宁洪龙, 李晓庆, 陶瑞强, 刘贤哲, 蔡炜, 陈建秋, 王磊, 姚日晖, 彭俊彪. 基于多成核机制的银纳米线制备研究[J]. 材料导报, 2019, 33(z1): 303-306.
[7] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[8] 李鑫, 王欢, 刘立业, 张吉波, 邱俊. 不同方法制备的乙醇胺还原胺化催化剂及其表征[J]. 材料导报, 2019, 33(z1): 466-469.
[9] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[10] 王业飞, 钱程, 杨震, 丁名臣, 王任卓. 新型喹啉季铵盐酸化缓蚀剂氯化苯甲酰甲基喹啉(PCQ)的合成及缓蚀性能[J]. 材料导报, 2019, 33(4): 699-704.
[11] 王博, 朱孝钦, 胡劲, 常静华, 陈洋, 史杰. 利用纳米石墨强化正癸酸-十四醇复合相变材料的导热性能[J]. 材料导报, 2019, 33(22): 3815-3819.
[12] 王胜涛, 卢维尔, 王桐, 夏洋. PMMA/PVA双支撑膜辅助铜刻蚀法:一种改进的石墨烯转移技术[J]. 材料导报, 2019, 33(2): 230-233.
[13] 马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
[14] 庄晓东, 李荣兴, 俞小花, 谢刚, 和晓才, 徐庆鑫. 固相法制备钛酸锂电极材料[J]. 材料导报, 2019, 33(16): 2654-2659.
[15] 薛雅楠, 韩政学, 李爽然, 张佳宇, 张雪慧, 王兆伟, 贾瑞洁, 王艳芹, 武晓刚, 李晓娜, 陈维毅. 纳米材料掺杂型聚乙烯醇双交联复合水凝胶的力-化学性质[J]. 材料导报, 2019, 33(10): 1745-1751.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed