Please wait a minute...
材料导报  2020, Vol. 34 Issue (2): 2159-2162    https://doi.org/10.11896/cldb.19010035
  高分子与聚合物基复合材料 |
压力流场中含炭黑聚对苯二甲酸乙二醇酯熔体的流变特性
郭增革1, 张斌2, 姜兆辉1, 贾曌1, 丁作伟1, 程博闻2, 李鑫3
1 山东理工大学鲁泰纺织服装学院,淄博 255000
2 天津工业大学中空纤维膜材料与膜过程省部共建国家重点实验室,天津 300387
3 中国纺织科学研究院有限公司生物源纤维制造技术国家重点实验室,北京 100025
Rheological Properties of Polyethylene Terephthalate Melt Containing Carbon Black in Pressure-driven Flow
GUO Zengge1, ZHANG Bin2, JIANG Zhaohui1, JIA Zhao1, DING Zuowei1, CHENG Bowen2, LI Xin3
1 Lutai School of Textile and Apparel,Shandong University of Technology,Zibo 255000,China
2 State Key Laboratory of Separation Membranes and Membrane Processes,Tianjin Polytechnic University,Tianjin 300387,China
3 State Key Laboratory of Biobased Fiber Manufacturing Technology,China Textile Academy,Beijing 100025,China
下载:  全 文 ( PDF ) ( 2352KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用毛细管流变仪及反向压力腔组件研究了压力流场中含炭黑聚对苯二甲酸乙二醇酯(PET)熔体的流变行为,并与普通PET熔体的流变行为进行对比。结果表明:随剪切速率的增加,含炭黑PET熔体的 “剪切变稀”行为比普通PET更显著;在相同温度和相同剪切速率下,含炭黑PET的剪切黏度随着压力的增加而增加;在相同剪切速率和相同压力下,随着温度的升高,含炭黑PET熔体的剪切黏度逐渐减小;压力增加ΔP与温度下降ΔT对剪切黏度的贡献是等效的;在相同剪切速率下,含炭黑PET熔体的黏-温依赖性随压力的升高而增强;在相同压力下,含炭黑PET熔体的黏-温依赖性随剪切速率的增加而减弱;随着温度的升高,普通PET和含炭黑PET熔体的结构粘度(Δη)降低,可纺性提高;当温度为290~295 ℃时,普通PET和含炭黑PET熔体的可纺性最优。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭增革
张斌
姜兆辉
贾曌
丁作伟
程博闻
李鑫
关键词:  聚对苯二甲酸乙二醇酯  炭黑  流变行为  压力  黏流活化能  结构黏度指数    
Abstract: Rheological behavior of carbon black polyethylene terephthalate (PET) melt in pressure flow field was studied by capillary rheometer and reverse pressure chamber assembly, and was compared with that of ordinary PET. The results showed that with the increase of shear rate, the shear thinning behavior of carbon black-containing PET melt was more significant than that of ordinary PET. At the same temperature and shear rate, the shear viscosity of carbon black PET increased with the increase of pressure; at the same shear rate and pressure, the shear viscosity of carbon black PET melt decreased with the increase of temperature. The contribution of pressure increasing and temperature decreasing to shear viscosity was equivalent. At the same shear rate, the viscosity-temperature dependence of carbon black PET melt increased with the increase of pressure; at the same pressure, the viscosity-temperature dependence of carbon black PET melt decreased with the increase of shear rate. With the increase of temperature, the Δη of ordinary PET and carbon black-containing PET melt was reduced, and the spinnability was improved. When the temperature was between 290 ℃ and 295 ℃, the spinnability of ordinary PET and carbon black-containing PET melt was optimal.
Key words:  polyethylene terephthalate    carbon black    rheological behavior    pressure    flow activation energy    structural viscosity index
               出版日期:  2020-01-25      发布日期:  2020-01-03
ZTFLH:  TQ314.2  
基金资助: 国家“十三五”重点研发计划项目(2016YFB0302800);国家“十二五”科技支撑计划项目(2011BAE05B00);山东省高等学校科技计划项目(J17KB011);生态纺织教育部重点实验室(江南大学)课题(KLET1603);淄博市校城融合发展计划项目(2018ZBXC474)
通讯作者:  cwyzguojing@163.com   
作者简介:  郭增革,博士,山东理工大学鲁泰纺织服装学院讲师。2012年3月获天津工业大学硕士学位,2014年10月获得天津工业大学博士学位。2014年11月进入山东理工大学鲁泰纺织服装学院工作至今,主要研究方向为天然高分子材料的改性,改性纤维的结构与性能研究。
引用本文:    
郭增革, 张斌, 姜兆辉, 贾曌, 丁作伟, 程博闻, 李鑫. 压力流场中含炭黑聚对苯二甲酸乙二醇酯熔体的流变特性[J]. 材料导报, 2020, 34(2): 2159-2162.
GUO Zengge, ZHANG Bin, JIANG Zhaohui, JIA Zhao, DING Zuowei, CHENG Bowen, LI Xin. Rheological Properties of Polyethylene Terephthalate Melt Containing Carbon Black in Pressure-driven Flow. Materials Reports, 2020, 34(2): 2159-2162.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010035  或          http://www.mater-rep.com/CN/Y2020/V34/I2/2159
1 Rueda M M, Auscher M C, Fulchiron R, et al. Progress in Polymer Scie-nce, 2017, 66, 22.2 Bridgman P W. Proceedings of the American Academy of Arts and Scie-nces, 1926, 61(3),57.3 Semjonow V. Rheologica Acta, 1962, 2(2),138.4 Koran F, Dealy J M. Journal of Rheology, 1999,43(5),1279.5 Driscoll P D, Bogue D C. Journal of Applied Polymer Science, 1990, 39(8), 1755.6 Sedlacek T, Zatloukal M, Filip P, et al. Polymer Engineering and Scie-nce, 2004, 44(7),1328.7 Utracki L A. Polymer Engineering and Science, 1985, 25 (11),655.8 Luo Z Y, Shang X L, Bai B F. Journal of Fluid Mechanics, 2019, 858(10), 91.9 Aho J, Syrjälä S. Journal of Applied Polymer Science, 2010, 117(2),1076.10 Wang R, Wang Z G. Macromolecules, 2014, 47(12),4094.11 Yu Y S, Zhao Y P. Journal of Colloid and Interface Science, 2009, 332(2), 467.12 Hwang G, Gomez-Flores A, Bradford S A, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554,306.13 Reynolds C, Thompson R, McLeish T. Journal of Rheology, 2018, 62(2), 631.14 White R P, Lipson J E G. Macromolecules, 2018,51(13), 4896.15 Noh K, Shin J, Lee J H. Industrial and Engineering Chemistry Research, 2017, 56(28),8016.
[1] 李焕焕, 张东东, 许子昂, 董瑶, 赵义平, 陈莉. 荧光碳点改性无纺布的制备及在汞(Ⅱ)检测中的应用[J]. 材料导报, 2020, 34(2): 2163-2168.
[2] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[3] 李今朝, 陈亮, 黄腾飞, 匡艳军, 邱振生. 关于反应堆压力容器新型用钢SA-508Gr.4N的研究进展[J]. 材料导报, 2019, 33(z1): 382-385.
[4] 王留成, 薛蕾, 郭丹丹, 李伊光, 陈冲冲. 热解温度对竹炭黑基本性能的影响[J]. 材料导报, 2019, 33(8): 1285-1288.
[5] 崔巍, 张煜杭, 张强, 冯子明. 考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法[J]. 材料导报, 2019, 33(6): 1036-1041.
[6] 吴敏, 吴丹萍, 常兆峰, 许燕, 潘波. BPCA分子标志物法对土壤体系中生物炭性质的描述[J]. 材料导报, 2019, 33(3): 536-540.
[7] 王林峰,曾韬睿,翁其能. 基于统计损伤理论的饱和细粒砂岩本构模型研究[J]. 材料导报, 2019, 33(22): 3727-3731.
[8] 廖明义, 宋雅婷. 阴离子合成POSS端基官能化聚丁二烯与白炭黑相互作用[J]. 材料导报, 2019, 33(2): 352-356.
[9] 陆亮亮, 刘雪峰, 张少明, 徐骏, 贺会军, 盛艳伟. 高频感应熔化金属丝气雾化制备球形钛粉[J]. 《材料导报》期刊社, 2018, 32(8): 1267-1270.
[10] 许慧, 赵洋, 任淑彬, 曲选辉. 真空压力熔渗与热压烧结制备(SiCp+Al2O3f)/2024Al复合材料的组织与拉伸性能分析[J]. 材料导报, 2018, 32(6): 951-956.
[11] 宋英豪, 薛宝霞, 彭云, 杨雅茹, 白洁, 牛梅. CMSs/APP对PET阻燃性能的影响[J]. 材料导报, 2018, 32(22): 3961-3966.
[12] 王闻宇, 李诺, 金欣, 刘亚敏, 肖长发, 林童. 利用氧等离子体预处理增强聚对苯二甲酸乙二醇酯/聚吡咯导电复合薄膜的界面粘附性*[J]. 《材料导报》期刊社, 2017, 31(18): 33-38.
[13] 文钰斌, 刘新红, 顾强, 陈晓雨, 贾全利, 杨林, 马腾. 不同碳源对纳米锌铝尖晶石合成及颗粒粒径的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 109-113.
[14] 李兵, 周子皓, 尹传强, 魏秀琴, 周浪. 氧化硅形态对合成氮氧化硅粉体的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 114-118.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[4] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[5] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[6] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[7] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[8] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[9] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[10] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed