Please wait a minute...
材料导报  2020, Vol. 34 Issue (2): 2163-2168    https://doi.org/10.11896/cldb.18110140
  高分子与聚合物基复合材料 |
荧光碳点改性无纺布的制备及在汞(Ⅱ)检测中的应用
李焕焕, 张东东, 许子昂, 董瑶, 赵义平, 陈莉
天津工业大学材料科学与工程学院,分离膜与膜过程省部级共建国家重点实验室,天津 300387
Fluorescent Carbon Dots Modified Non-woven:Preparation and Application in Mercury (Ⅱ) Detection
LI Huanhuan, ZHANG Dongdong, XU Zi’ang, DONG Yao, ZHAO Yiping, CHEN Li
State Key Laboratory of Separation Membranes and Membrane Processes,School of Materials Science and Engineering,Tianjin Polytechnic University,Tianjin 300387,China
下载:  全 文 ( PDF ) ( 5637KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 实现微量重金属离子的精准检测是防治水环境中重金属污染的重要前提。荧光探针法检测重金属效果显著,但该方法易造成二次污染。基于此,本研究提出将荧光碳点(Carbon dots, CDs)接枝到改性无纺布上,制备出具有可视化检测金属离子功能的荧光无纺布。首先,以柠檬酸和三聚氰胺为碳源和氮源,采用水热法制备了高荧光强度、稳定、高量子产率的碳点。所制备的荧光CDs在汞离子浓度5×10-8 ~25 ×10-8 mol/L的范围内有良好的线性关系,检测极限可达到2 nmol/L。然后,将CDs通过戊二醛(GA)接枝到2-甲基-1,5-二氨基戊烷(DAMP)改性的聚对苯二甲酸乙二醇酯(PET)无纺布上,得到具有金属离子可视化检测功能的PET-DAMP-CDs无纺布。采用透射电子显微镜(TEM)、衰减全反射傅里叶变换红外光谱仪(ATR-FTIR)、扫描电子显微镜(SEM)、X射线光电子能谱仪(XPS)、紫外可见光谱仪(UV-Vis)和荧光分光度计分析了CDs和PET-DAMP-CDs无纺布的性能。结果表明,制备的CDs稳定地接枝到无纺布上,无纺布的接触角由110.6°降至75.6°,且改性的无纺布具有较强的荧光性能,是一种极具发展前景的荧光检测材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李焕焕
张东东
许子昂
董瑶
赵义平
陈莉
关键词:  碳点  聚对苯二甲酸乙二醇酯无纺布  荧光性能  汞离子  检测    
Abstract: Accurate detection of trace heavy metal ions is an important prerequisite for the prevention and control of heavy metal pollution in water environment. Fluorescence probe method is exceptionally effective in detecting heavy metals, nevertheless, it is prone to cause secondary pollution. In this study, we proposed a novel approach to prepare the fluorescent non-woven capable of visual detection of metal ions by grafting the fluorescent carbon dots (CDs) onto the modified non-woven. Firstly, taking citric acid and melamine as carbon source and nitrogen source, the carbon dots with high and stable fluorescence intensity, high quantity yield were prepared by hydrothermal method. The obtained CDs showed excellent sensitivity and selectivity to Hg2+ with a detection limit as low as 2 nmol/L in the range of 5×10-8 —25 ×10-8 mol/L. Then, the CDs were immobilized on the surface of 1,5-diamino-2-methylpentane (DAMP) modified PET non-woven through glutaraldehyde (GA), and the PET-DAMP-CDs non-woven capable of visual detection of metal ions was obtained. The properties of the CDs and PET-DAMP-CDs nonwoven were investigated by transmission electron microscope (TEM), attenuated total reflectance Fourier transform infrared spectroscope (ATR-FTIR), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS), UV-visible spectrometer (UV-Vis), and fluorescence spectrophotometer. The analytic results revealed that the CDs had stably grafted onto the non-woven. Meanwhile, the PET-DAMP-CDs non-woven maintained the strong fluorescent properties of CDs, avoided the flaw of CDs leak under water, and showed a decrease in initial contact angle from 110.6° to 75.6°. Consequently, the PET-DAMP-CDs non-woven is a promising candidate in the field of fluorescent detection material.
Key words:  carbon dots    polyethylene glycol terephthalate nonwoven    fluorescent properties    mercury ion    detection
               出版日期:  2020-01-25      发布日期:  2020-01-03
ZTFLH:  TB34  
基金资助: 天津市科技计划项目(17YFZCSF01230)
通讯作者:  yipingzhao@tjpu.edu.cn   
作者简介:  李焕焕,天津工业大学在读研究生,导师赵义平教授。研究生方向:荧光碳点的制备、污水中重金属离子检测和吸附材料的制备及性能研究。申请发明专利3项;赵义平,天津工业大学材料科学与工程学院教授、博士生导师、材料科学与工程国家级实验教学示范中心主任、中空纤维膜材料与膜过程天津市重点实验室主任,天津市塑料工程学会副理事长,天津市胶粘剂研究会副理事长。主要从事智能和功能分离膜材料、膜分离技术、塑料及橡胶材料改性与加工等方向的研究工作。目前,主持在研省部级项目3项、局级项目1项、横向项目2项;作为主要成员参加在研教育部高校博士点基金项目2项。在国内外学术刊物及会议上发表论文30余篇,其中SCI、EI等收录20余篇;申请国际发明专利1项,作为第一发明人申请国家发明专利13项,获授权7项;主编著作1部,参编1部;获天津市技术发明奖三等奖1项,获中国纺织工业协会科学技术奖二等奖1项,获中国纺织工业联合会科学技术奖二等奖1项,香港桑麻纺织科技奖二等奖。已培养出博士、硕士20余名。
引用本文:    
李焕焕, 张东东, 许子昂, 董瑶, 赵义平, 陈莉. 荧光碳点改性无纺布的制备及在汞(Ⅱ)检测中的应用[J]. 材料导报, 2020, 34(2): 2163-2168.
LI Huanhuan, ZHANG Dongdong, XU Zi’ang, DONG Yao, ZHAO Yiping, CHEN Li. Fluorescent Carbon Dots Modified Non-woven:Preparation and Application in Mercury (Ⅱ) Detection. Materials Reports, 2020, 34(2): 2163-2168.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110140  或          http://www.mater-rep.com/CN/Y2020/V34/I2/2163
1 Kong D, Yan F, Shi D, et al. Journal of the Iranian Chemical Society, 2015, 12 (10), 1841.2 Atchudan R, Edison T, Aseer K R, et al. Biosensors & Bioelectronics, 2018, 99, 303.3 Guo Y, Zhang L, Zhang S, et al. Biosensors & Bioelectronics, 2015, 63, 61.4 Iqbal A, Iqbal K, Xu L, et al. Sensors and Actuators B: Chemical, 2018, 255, 1130.5 Kumari A, Sahu S K, Kumar S. Sensors and Actuators B: Chemical, 2018, 254, 197.6 Xie Z, Sun X, Jiao J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 38.7 Gao Z F, Li T T, Xu X L, et al. Biosensors & Bioelectronics, 2016, 83, 134.8 Shangguan J F, Huang J, He D J, et al. Analytical Chemistry, 2017, 89(14), 7477.9 Wang R X, Wang X F, Sun Y M. Sensors and Actuators B: Chemical, 2017, 241, 73.10 Gogoi N, Barooah M, Majumdar G, et al. ACS Applied Materials and Interfaces, 2015, 7, 3058.11 Guo J, Zhou M, Yang C. Scientific Reports, 2017, 7 (1), 7902.12 Kim H J, Han S W, Kim J H, et al. Current Applied Physics, 2018, 18 (4), 369.13 Pang L J, Hu J T, Zhang M J, et al. Environmental Science and Pollution Research, 2018, 25(11),11045.14 Yuan Y H, Li R S, Wang Q, et al. Nanoscale, 2015, 7, 16841.15 Sun Y P, Zhou B, Lin Y, et al. Journal of the American Chemical Society, 2006, 128, 7756.16 Zheng M, Li Y, Liu S, et al. ACS Applied Materials & Interfaces, 2016, 8, 23533.17 Guo L, Ge J, Liu W, et al. Nanoscale, 2015, 8(2),729.18 Zhou L, Lin Y, Huang Z, et al. Chemical Communications, 2012, 48(8), 1147.19 Cui X, Zhu L, Wu J, et al. Biosensors & Bioelectronics, 2015, 63, 506.20 Wang H, Ke F, Mararenko A, et al. Nanoscale, 2014, 6(13), 7443.21 Liu C, Zhang P, Zhai X, et al. Biomaterials, 2012, 33(13), 3604.
[1] 郭潇, 周玉洁, 高静茹, 余薇, 许翠, 韩翠平. 可激活荧光-磁共振双模态纳米材料的制备与性能[J]. 材料导报, 2020, 34(Z1): 97-102.
[2] 高治峰, 董丽虹, 王海斗, 吕振林, 郭伟, 王博正. 振动红外热成像技术用于不同类型缺陷检测的研究进展[J]. 材料导报, 2020, 34(9): 9158-9163.
[3] 张娜, 韩筱玉, 梁金生, 李艳, 孟军平, 张红. 非金属矿物材料脱霉性能评价方法研究进展[J]. 材料导报, 2020, 34(5): 5078-5084.
[4] 王博正, 董丽虹, 王海斗, 康嘉杰, 郭伟, 向明. 激光红外热成像技术在材料缺陷检测中的研究和应用现状[J]. 材料导报, 2020, 34(5): 5127-5132.
[5] 张晓琳, 丰晓婷, 詹世平, 卢春兰, 李鸣明, 侯维敏. 基于双硫键的荧光传感器在生物检测及靶向治疗药物输送系统中的应用[J]. 材料导报, 2020, 34(5): 5142-5147.
[6] 王心淼, 陈利, 焦伟, 赵世波. 多轴向三维机织复合材料的低速冲击力学性能[J]. 材料导报, 2020, 34(14): 14191-14197.
[7] 宋江,王腾蛟,冯涛,CHAN Siew Yin,荣帆,李鹏,黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述[J]. 材料导报, 2020, 34(1): 1126-1134.
[8] 季昌国, 余超. 汽轮机焊接隔板坡口角度对相控阵超声回波信号影响的定量研究[J]. 材料导报, 2019, 33(Z2): 441-446.
[9] 姚旭, 张光友, 刘博, 谢拯, 王煊军. 基于纳米金生长比色检测水体中的肼[J]. 材料导报, 2019, 33(z1): 310-313.
[10] 崔巍, 张煜杭, 张强, 冯子明. 考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法[J]. 材料导报, 2019, 33(6): 1036-1041.
[11] 刘文, 李婷婷, 张冰, 张荣, 刁海鹏, 常宏宏, 魏文珑. 基于绿色天然物质合成荧光碳点及其性质和应用综述[J]. 材料导报, 2019, 33(3): 402-409.
[12] 吴美容, 赖琼宇, 周佳, 倪赟, 吴琼, 张承武, 于海东, 李林. 基于荧光法纸基器件在体外疾病检测中的应用进展[J]. 材料导报, 2019, 33(1): 48-55.
[13] 李俊超, 朱丽娜, 马国政, 王海斗. 自润滑关节轴承质量检测及寿命评估研究现状[J]. 材料导报, 2018, 32(21): 3796-3804.
[14] 崔巍, 王珂, 姜民政, 马春阳, 冯子明, 冷建成. 管道焊缝裂纹扩展的流固磁耦合表征[J]. 材料导报, 2018, 32(16): 2852-2858.
[15] 高 伟,赵广杰. 硝酸表面氧化改性木质活性碳纤维[J]. 《材料导报》期刊社, 2018, 32(10): 1688-1694.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed