Please wait a minute...
材料导报  2020, Vol. 34 Issue (9): 9158-9163    https://doi.org/10.11896/cldb.19040053
  金属与金属基复合材料 |
振动红外热成像技术用于不同类型缺陷检测的研究进展
高治峰1, 董丽虹2, 王海斗2, 吕振林1, 郭伟2, 王博正3
1 西安理工大学材料科学与工程学院,西安 710048
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 中国地质大学(北京)工程技术学院,北京 100083
Research Progress and Prospect of Vibrothermography in Different Defect Types
GAO Zhifeng1,DONG Lihong2, WANG Haidou2, LYU Zhenlin1, GUO Wei2, WANG Bozheng3
1 School of Materials Sciences and Engineering, Xi’an University of Technology, Xi’an 710048, China
2 National Key Laboratory for Remanufaeturing,Academy of Armored Forces,Beijing 100072, China
3 School of Engineering and Technology, China University of Geosciences, Beijing 100083, China
下载:  全 文 ( PDF ) ( 6602KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 红外检测作为一种新型无损检测技术广泛应用于电力、机械及航空航天等领域,已成为现代工业中必不可少的一部分。相比于传统检测技术,红外检测技术具有非接触、检测速度快、实时监测等优点。振动红外热成像检测技术属于红外无损检测技术的一种,其由于单次激励面积大,检测时不受构件形状的限制且对常规检测技术难以检测的微裂纹具有很好的检测效果,从而得到了广泛研究。
然而,振动红外热成像技术在检测时容易受到检测条件(预紧力、耦合材料)和检测参数(激励频率、振幅、时间)的影响,使得检测结果可重复性较差、效果不佳。研究者们除了对检测条件和参数进行了有关探究外,还重点研究了该技术在不同缺陷检测中的适用性。该技术在腐蚀分层、冲击损伤、裂纹、埋藏缺陷等检测中已得到成功应用。该技术最早应用于裂纹缺陷检测,其对形状复杂的部件的微裂纹检测效果好,能检测出裂纹的扩展程度和部件的损伤程度;在复合材料的腐蚀分层、冲击损伤等检测领域应用最多,能探测出分层的位置和大小、冲击损伤的程度;近年来开始应用于埋藏缺陷的检测,其虽然能检测出涂层下和内部的埋藏裂纹,但存在探测深度的局限性,检测效果对图像处理有很大的依赖性。
本文首先重点介绍了振动红外热成像技术的原理、发展历程及相关设备和常用的图像处理技术。随后,综述了该技术的生热机理(摩擦、粘弹性效应及塑性变形)及其在腐蚀分层、冲击损伤、疲劳裂纹和埋藏裂纹等缺陷方面的研究现状。最后简要总结了振动红外热成像技术的优缺点,指出降低功率、提高图像处理清晰度和改进算法、多种检测方法的集成化是该技术未来的重点发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高治峰
董丽虹
王海斗
吕振林
郭伟
王博正
关键词:  振动红外热成像  缺陷检测  生热  腐蚀  分层  裂纹    
Abstract: As a new type of non-destructive testing technology, infrared detection has been widely used in life, industry, aerospace and other fields. It has become an indispensable part of modern industry. It has the advantages of non-contact, fast detection and real-time monitoring compared with traditional detection technology. Vibrothermography detection technology belongs to infrared non-destructive testing. Because of its large single excitation area, it is not limited by the shape of the component during testing, and it has a good detection effect on microcracks which are difficult to detect by conventional detection techniques.
However, the vibrothermography technology is susceptible to detection conditions (preload, coupling material) and detection parameters (excitation frequency, amplitude, time) during detection, which makes the detection results less reproducible and poorly effective. In addition to the investigation of the test conditions and parameters, the researchers focused on the adaptability of the technology in different defect detection. It has been successfully applied in the detection of corrosion delamination, impact damage, cracks, buried defects and the like. Among them, crack defect detection is the earliest application. It has good detection effect on microcracks of complex shapes, and can show the degree of crack propagation and the degree of damage of components. Corrosion delamination and impact damage of composite materials are the most widely used and can be detected. The location and size of the layer, the degree of impact damage; and the buried defects have only been applied in recent years. Although the underlying coating and the internal buried crack can be detected, there are limitations of the detection depth, and the detected effect is on image processing. There is a big dependency.
Firstly, the principle, development history and some equipments and common image processing techniques of vibrothermography technology are introduced firstly. Then, the heat generation mechanism (friction, viscoelastic effect, plastic deformation) and its corrosion in the technology are reviewed. Research status of layers, impact damage, fatigue cracks and buried cracks. Finally, the advantages and disadvantages of vibration infrared thermal imaging technology are briefly summarized. It is pointed out that reducing power, improving the sharpness of image proces-sing and improving algorithms, and integrating multiple detection methods are the key development directions of this technology in the future.
Key words:  vibrothermography    defect detection    heat generation    corrosion    delamination    crack
                    发布日期:  2020-04-27
ZTFLH:  TG115.28  
基金资助: 国家自然科学基金(51675532;51535011)
通讯作者:  wanghaidou@aliyun.com   
作者简介:  高治峰,西安理工大学材料科学与工程学院硕士研究生,在陆军装甲兵学院装备再制造技术国防科技重点实验室联合培养。在王海斗研究员、董丽虹副研究员以及吕振林教授的指导下进行研究。主要研究领域为红外无损检测。
董丽虹,陆军装甲兵学院装备再制造技术国防科技重点实验室副研究员,博士生导师。研究方向为无损检测及再制造寿命评估。
王海斗,陆军装甲兵学院装备再制造技术国防科技重点实验室常务副主任,研究员、博士研究生导师,主要从事再制造工程、表面工程研究。国防973计划首席科学家,国家杰出青年科学基金获得者。
引用本文:    
高治峰, 董丽虹, 王海斗, 吕振林, 郭伟, 王博正. 振动红外热成像技术用于不同类型缺陷检测的研究进展[J]. 材料导报, 2020, 34(9): 9158-9163.
GAO Zhifeng,DONG Lihong, WANG Haidou, LYU Zhenlin, GUO Wei, WANG Bozheng. Research Progress and Prospect of Vibrothermography in Different Defect Types. Materials Reports, 2020, 34(9): 9158-9163.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040053  或          http://www.mater-rep.com/CN/Y2020/V34/I9/9158
1 Balageas D, et al. Journal of Nondestructive Evaluation,2016,35(1),18.
2 Jedrasiak P, Shercliff H R. Materials & Design,2018,158,184.
3 Ibarra-Castanedo C, Grinzato E, Marinetti S, et al. In: 17th World Conference on Nondestructive Testing, Shanghai, China,2008,pp.3922.
4 Mendioroz A, Castelo A, Celorrio R, et al. Measurement Science and Technology,2013,24(6),065601.
5 Xiang M, Dong L H, Wang H D, et al. Laser & Infrared,2018,48(6),667(in Chinese).
向明,董丽虹,王海斗,等.激光与红外,2018,48(6),667.
6 Reifsnider K L, Henneke E G, Stinchcomb W W. In:The mechanics of vibrothermography. Springer, Boston, MA,1980,pp.249.
7 Henneke E G, Reifsnider K L, Stinchcomb W W. JOM,1979,31(9),11.
8 Adams R D, Cawley P, Pye C J, et al. Journal of Mechanical Enginee-ring Science,1978,20(2),93.
9 Jia Y, Zhang R, Zhang W, et al. IOP Publishing,2018,389(1),012023.
10 Favro L D, Han X, Ouyang Z, et al. Proceedings of SPIE- The International Society for Optical Engineering,2000,4020(4020),182.
11 Rantala J, Wu D, Busse G.In:Research in Nondestructive Evaluation,1995,pp.215.
12 Han X, Loggins V, Zeng Z, et al. Applied Physics Letters,2004,85(8),1332.
13 Song Y, Han X. Infrared Physics & Technology,2014,66(9),43.
14 Burke M W, Miller W O. International Society for Optics and Photonics,2004,5405,313.
15 Holland S D. AIP Conference Proceedings,2007,894(1),478.
16 Holland S D, Uhl C, Renshaw J. AIP Conference Proceedings,2008,975(1),491.
17 Solodov I, Busse G. Applied Physics Letters,2013,102(6),061905.
18 Favro L D, Han X, Proceedings of SPIE-The International Society for Optical Engineering,2000,4020(4020),182.
19 Pye C J, Adams R D. NDT International,1981,14(3),111.
20 Rizi A S, Hedayatrasa S, Maldague X, et al. Infrared Physics & Techno-logy,2013,61,101.
21 Solodov I, Busse G. Applied Physics Letters,2013,102(6),061905.
22 Holland S D, Uhl C, Renshaw J. AIP Conference Proceedings,2008,975(1),491.
23 Gleiter A, Riegert G, Zweschper T, et al. Insight-Non-Destructive Testing and Condition Monitoring,2007,49(5),272.
24 Zweschper T, Dillenz A, Riegert G, et al. Insight-Non-Destructive Testing and Condition Monitoring,2003,45(3),178.
25 Umar M Z, Vavilov V, Abdullah H, et al. Russian Journal of Nondestructive Testing,2016,52(4),212.
26 Vavilov V P, Burleigh D D. NDT & E International,2015,73,28.
27 Bai G, Lamboul B, Roche J M, et al. Quantitative InfraRed Thermography Journal,2016,13(1),15.
28 Reifsnider K L, Henneke E G, Stinchcomb W W. The mechanics of vibrothermography, Plenum Press, New York,1980.
29 Guan H Q,Guo X W, Ma F N. Nondestructive Testing,2016,38(9),1(in Chinese).
管和清,郭兴旺,马丰年.无损检测,2016,38(9),1.
30 Renshaw J, Holland S D, Thompson R B, et al. International Journal of Fatigue,2011,33(7),849.
31 Lu J, Han X, Newaz G, et al. Nondestructive Testing and Evaluation,2007,22(2-3),127.
32 Chen JC, Kephart J, Lick K, et al. Nondestructive Testing and Evaluation,2007,22(2),83.
33 Chen D, Zhang C, Zeng Z, et al. International Society for Optics and Photonics,2009,7512,751206.
34 Park H, Choi M, Park J, et al. Infrared Physics & Technology,2014,62,124.
35 Choi M, Park J, Park H, et al. Journal of the Korean Society for Nondestructive Testing,2015,35(3),215.
36 Ibarra-Castanedo C, Genest M, Guibert S, et al. International Society for Optics and Photonics,2007,6541,654116.
37 Liu B, Zhang H, Fernandes H, et al. Sensors,2016,16(5),743.
38 Boccardi S, Boffa N D, Carlomagno G M, et al. Journal of Physics: Conference Series,2015,658(1),012007.
39 Lamboul B, Passilly F, Roche J M, et al. AIP,2015,1650(1),319.
40 Kersemans M, Verboven E, Segers J, et al. Multidisciplinary Digital Publishing Institute Proceedings,2018,2(8),554.
41 He Y, Chen S, Zhou D, et al. IEEE Transactions on Industrial Informa-tics,2018,14(12),5575.
42 Zheng J, Zheng K, Zhang S Y. Nondestructive Testing,2009,31(12),946(in Chinese).
郑江,郑凯,张淑仪.无损检测,2009,31(12),946.
43 Imanishi D, Nishina Y, Yoshinaga Y. International Society for Optics and Photonics,2012,8354,83540A.
44 Feng F Z, Zhang C S, Song A B, et al. Infrared and Laser Engineering,2016,45(3),60(in Chinese).
冯辅周,张超省,宋爱斌,等.红外与激光工程,2016,45(3),60.
45 Genest M, Mabrouki F, Fahr A, et al. International Society for Optics and Photonics,2009,7294,72940Y.
46 Jia Y, Zhang R, Zhang W, et al. IOP Publishing,2018,389(1),012023.
47 Lick K, Urcinas J, Austin P, et al. AIP,2008,975(1),504.
48 Mendioroz A, Castelo A, Celorrio R, et al. Measurement Science and Technology,2013,24(6),065601.
49 Mendioroz A, Celorrio R, Cifuentes á, et al. International Society for Optics and Photonics,2016,9861,98610E.
50 Chaki S, Marical P, Panier S, et al. Ndt & E International,2011,44(6),519.
51 Piau J M, Bendada A, Maldague X, et al. International Society for Optics and Photonics,2007,6541,654112.
52 Montanini R, Freni F, Rossi G L. Review of Scientific Instruments,2012,83(9),094902.
[1] 梁惠东, 郑汉杰, 杨浩, 王晨, 陈俊锋, 汪炳叔. 氮添加量对块体纳米晶NdFeB永磁材料的影响[J]. 材料导报, 2020, 34(8): 8025-8030.
[2] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[3] 陈钢, 鞠娜, 雷玉成, 王丹, 朱强, 李天庆, 陈璐. 430不锈钢在550℃流动Pb-Bi合金中的腐蚀行为[J]. 材料导报, 2020, 34(6): 6105-6108.
[4] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[5] 周蕊, 刘众旺, 张建国, 刘兵飞, 杜春志. 基于DPC-CZM混合模型的金属粉末压坯裂纹三维数值模拟[J]. 材料导报, 2020, 34(6): 6151-6155.
[6] 陈灵芝, 周张健, CarstenSchroer. 铅冷能源系统中液态金属与铁基合金相容性的研究进展[J]. 材料导报, 2020, 34(5): 5096-5101.
[7] 陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119.
[8] 王博正, 董丽虹, 王海斗, 康嘉杰, 郭伟, 向明. 激光红外热成像技术在材料缺陷检测中的研究和应用现状[J]. 材料导报, 2020, 34(5): 5127-5132.
[9] 马潇磊, 张成成, 张朝磊, 马晓艺, 赵海东, 方文. 基于“混杂”设计的索氏体新型不锈钢的组织和性能[J]. 材料导报, 2020, 34(4): 4103-4107.
[10] 黄海亮, 陈跃良, 张勇, 卞贵学, 王晨光, 吴省均. 飞机多金属耦合在溶液状态与大气状态下的腐蚀行为对比及当量折算研究[J]. 材料导报, 2020, 34(4): 4118-4125.
[11] 孙杨,乔国富. 锈蚀钢筋与混凝土粘结性能研究综述[J]. 材料导报, 2020, 34(3): 3116-3125.
[12] 瞿猛, 唐建国, 叶凌英, 李承波, 李建湘, 周旺, 邓运来. 过时效与添加Zr对Al-Zn-Mg合金耐腐蚀性能影响的对比[J]. 材料导报, 2020, 34(2): 2083-2087.
[13] 高旭东, 邵永波, 谢丽媛, 杨冬平. X56海底管道在腐蚀环境下疲劳裂纹扩展过程预测[J]. 材料导报, 2020, 34(2): 2123-2130.
[14] 崔巍, 宋日悬, 肖忠民, 冯子明, 冷德成, 董康兴, 张强, 杨志军. X80油气管道焊缝双裂纹干涉效应多场耦合数值模拟方法[J]. 材料导报, 2020, 34(2): 2131-2136.
[15] 李萧, 胡水平, 韩天棋. Nd、Y对AZ31镁合金热轧退火薄板耐蚀性的影响[J]. 材料导报, 2020, 34(10): 10088-10092.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed