Please wait a minute...
材料导报  2020, Vol. 34 Issue (9): 9164-9169    https://doi.org/10.11896/cldb.19040007
  高分子与聚合物基复合材料 |
细菌纤维素复合材料高值化利用的研究进展
江凯, 周雪松
华南理工大学轻工科学与工程学院,广州 510000
Research Progress on High Value Utilization of Bacterial Cellulose Composites: a Review
JIANG Kai, ZHOU Xuesong
School of Light Industry and Engineering, South China University of Technology, Guangzhou 510000, China
下载:  全 文 ( PDF ) ( 6267KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 细菌纤维素(BC)是一种由微生物产生的高分子聚合物。利用细菌纤维素制备的复合材料近几年也备受关注,细菌纤维素复合材料的制备与运用也都取得了一些突破。但是细菌纤维素在单独使用时,往往具有很大的局限性。例如,细菌纤维素价格昂贵,且本身并不具备导电、抗菌等特点,这就限制了细菌纤维素的应用范围。因此,细菌纤维素复合材料的研究显得尤为重要。但是,细菌纤维素复合材料的运用面临两点困难:其一,细菌纤维素复合材料生产十分困难;其二,细菌纤维素和辅助材料(如丝胶蛋白、银纳米颗粒等)价格昂贵,从而造成细菌纤维素复合材料生产成本高。因此细菌纤维素高值化利用成为研究热点。近年来,细菌纤维素复合材料的相关研究主要集中于两个方面:(1)研究者通过优化细菌纤维素复合材料生产工艺来获得高性能复合材料;(2)将细菌纤维素复合材料主要运用于电极材料和伤口敷料两方面。研究者们在这两方面已经取得了一些突破。但是总体来说,细菌纤维素复合材料的开发略显不足。针对此现象,本文分类总结了细菌纤维素在生物医学、光电学、食品工业和其他领域的综合利用。食品工业领域方面,本文探讨了利用细菌纤维素制备生物塑料和开发食品级的皮克林乳液。生物医学领域方面,细菌纤维素可以和苯扎氯铵、铜、银以及氧化锌纳米颗粒等抗菌物质复合,新的复合材料在组织工程和医用敷料方面都展示出良好的效果。光电学领域方面,本文介绍了细菌纤维素在催化剂、电极材料、超级电容器方面的运用。其他领域方面,本文阐述了细菌纤维素在重金属回收方面的相关研究。最后,本文分析了细菌纤维素复合材料需解决的难题,并展望了细菌纤维素复合材料的发展前景,为细菌纤维素复合材料的高值化利用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
江凯
周雪松
关键词:  细菌纤维素  复合材料  高值化利用    
Abstract: Bacterial cellulose (BC) is a type of high molecular polymer produced by microorganisms. In recent years,composite materials prepared by bacterial cellulose have also received much attention and some breakthroughs have been made in the preparation and application of bacterial cellulose composite materials. However, bacterial cellulose often has significant limitations when it is used alone. For example, pure bacterial cellulose is expensive and it does not have characteristics of conductivity, antibacterial, etc., which limits the scope of applications of bacterial cellulose. Therefore, the researches of bacterial cellulose composites are particularly important. However, the applications of bacterial cellulose composites face two difficulties. First, bacterial cellulose composite materials are difficult to produce. Second, bacterial cellulose and auxiliary mate-rials (silk fibroin, silver nanoparticles, etc.) are expensive, which results in high cost of bacterial cellulose compo-sites production. Therefore, the high value utilization of bacterial cellulose became a research hotspot. In recent years, many related studies on bacterial cellulose composites have focused on two aspects. (i) Researchers can obtain high-performance composites by optimizing bacterial cellulosic composite production processes. (ii) Bacterial cellulose composite materials are mainly applied to electrode materials and wound dressings. Researchers had made some breakthroughs in these two fields. However, in general, the development of bacterial cellulose composites is slightly insufficient. In response to this phenomenon, this paper summarized the comprehensive utilization of bacterial cellulose in the fields of biomedicine, optoelectronics, food industry and other fields. In the field of food industry, this article discussed preparation of bioplastics from bacterial cellulose and the developments of food grade Pickering emulsions. In the field of biomedicine, bacterial cellulose combined with benzalkonium chloride, copper, silver, zinc oxide nanoparticles and other antibacterial substances to form composite materials. The new composite materials had shown good effects in tissue engineering field and medical dressing field. In the field of optoelectronics, the applications of bacterial cellulose in catalysts, electrode materials and supercapacitors were introduced in this paper. In other fields, this paper described the studies of bacterial cellulose on heavy metal recovery. At the end of this paper, the problems of bacterial cellulose composites that need to be solved were analyzed, and the development prospects of bacterial cellulose composites were prospected. The paper provided some references for the high value utilization of bacterial cellulose compo-sites.
Key words:  bacterial cellulose    composite material    high value utilization
                    发布日期:  2020-04-27
ZTFLH:  TB332  
基金资助: 广州市科技计划项目(201607020025)
通讯作者:  xszhou@scut.edu.cn   
作者简介:  江凯,华南理工大学在读硕士研究生,主要从事细菌纤维素高分子材料的研究。
周雪松,华南理工大学副研究员。2003毕业于中国科学院化学研究所,获得理学博士学位。长期从事天然高分子改性及其功能材料的研究,并在半纤维素基功能高分子材料等方面做出了多项创新性成果。
引用本文:    
江凯, 周雪松. 细菌纤维素复合材料高值化利用的研究进展[J]. 材料导报, 2020, 34(9): 9164-9169.
JIANG Kai, ZHOU Xuesong. Research Progress on High Value Utilization of Bacterial Cellulose Composites: a Review. Materials Reports, 2020, 34(9): 9164-9169.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040007  或          http://www.mater-rep.com/CN/Y2020/V34/I9/9164
1 Badshah M, Ullah H, Khan A R, et al. International Journal of Biological Macromolecules,DOI:10.1016/j.ijbiomac.2018.02.135.
2 Brown K, Adrian J.Journal of the Chemical Society, Transactions,1886,49,432.
3 Brown R M, Willison J H, Richardson C L. Proceedings of the National Academy of Sciences of the United States of America,1976,73(12),4565.
4 Ross P, Mayer R, Benziman M. Microbiological Reviews,1991,55(1),35.
5 Numata Y, Kono H, Mori A, et al. Food Hydrocolloids,DOI:10.1016/j.foodhyd.2019.01.060.
6 Somayeh S, Taghi T, Mahdi M, et al. International Journal of Biological Macromolecules,DOI:10.1016/j.ijbiomac.2018.09.047.
7 Khamrai M, Banerjee S L, Paul S, et al. International Journal of Biolo-gical Macromolecules,2019,122,940.
8 Ma X, Lou Y, Chen X, et al. Chemical Engineering Journal,2019,356,227.
9 Liu R, Ma L, Huang S, et al. The Journal of Physical Chemistry C,2016,120(50),28480.
10 Hermansyah H, Carissa R, Faiz M B, et al. Advanced Materials Research,2014,997,158.
11 Ullah H, Santos Hélder A, Khan T. Cellulose,2016,23(4),2291.
12 Zhai X, Lin D, Liu D. Food Research International,2018,103,12.
13 Lin S B, Chen L C, Chen H H. Journal of Food Process Engineering,2011,34(4),1363.
14 Xiang Z, Chen Y, Liu Q, et al. Green Chemistry,2018,20(5),1085.
15 Zheng Y, Jiao Y, Ge L, et al. Angewandte Chemie-International Edition,2013,52(11),3110.
16 McKone J R, Warren E L, Bierman M J, et al. Energy & Environmental Science,2011,4(9),3573.
17 Wei L, Luo J, Jiang L, et al. International Journal of Hydrogen Energy,2018,43(45),20704.
18 Zhang N, Yue L, Xue Y, et al. IEEE Journal of Translational Enginee-ring in Health and Medicine,DOI:10.1109/JTEHM.2018.2863388.
19 Qin D, Gao S, Wang L, et al. Microchimica Acta,2017,184(8),2759.
20 Ayumi D, Jun M, Yehua S, et al. Carbohydrate Polymers,2018,200,381.
21 Long C, Qi D, Wei T, et al. Advanced Functional Materials,2014,24(25),3953.
22 Yu S H. Advanced Materials,2013,25(34),4746.
23 Zhao S, Yan T, Wang H, et al. Applied Surface Science,2016,369,460.
24 Xu X, Sun Z, Chua D H C, et al. Scientific Reports,2015,5,11225.
25 Li Y, Liu Y, Wang M, et al. Carbon,2018,130,377.
26 Bai Q, Xiong Q, Li C, et al. Applied Surface Science,2018,455,795.
27 Wei B, Yang G, Hong F. Carbohydrate Polymers,2011,84(1),533.
28 Zhang Y, Peng H, Huang W, et al. Journal of Colloid and Interface Science,2008,325(2),371.
29 Berndt S, Wesarg F, Wiegand C, et al. Cellulose,2013,20(2),771.
30 Kukharenko O, Jean-François Bardeau, Zaets I, et al. European Polymer Journal,2014,60,247.
31 Napavichayanun S, Yamdech R, Aramwit P. Archives of Dermatological Research,2016,308(2),123.
32 Cai J, Kimura S, Wada M, et al. Biomacromolecules,2009,10(1),87.
33 de Oliveira Barud, Hélida Gomes, Da Silva R R, et al. Carbohydrate Polymers,2016,153,406.
34 Napavichayanun S, Ampawong S, Harnsilpong T, et al. Archives of Dermatological Research,2018,310(10),795.
35 Danica Z, Dragica S, Irina O, et al. International Journal of Biological Macromolecules,2018,118,494.
36 Sajjad W, Khan T, Ul-Islam M, et al. Carbohydrate Polymers,2019,206,548.
37 Wu J, Yin N, Chen S, et al. Cellulose,2019,26(4),2513.
38 Zare E N,Motahari A, Sillanpää M. Environmental Research,2018,162,173.
39 Yang Z, Ren L, Jin L, et al. Chemical Engineering Journal,2018,344,441.
40 Kamal O, Pochat-Bohatier C, Sanchez-Marcano J. Separation and Purification Technology,2017,183,153.
41 Urbina L, Guaresti O, Requies J, et al. Carbohydrate Polymers,2018,193,362.
42 Abdelraof M, Hasanin M S, El-Saied H. Carbohydrate Polymers,2019,211,75.
43 Dórame-Miranda R F, Gámez-Meza N, Medina-Juárez L Á, et al. Carbohydrate Polymers,2019,207,91.
44 Kheiry E V, Parivar K, Baharara J, et al. Iranian Journal of Basic Medical Sciences,2018,21(9),965.
45 Cao S, Shi L, Miao M, et al. Electrochimica Acta,2019,298,22.
46 Yuan Y, Zhou J, Rafiq M I, et al. Electrochimica Acta,2019,295,82.
[1] 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
[2] 郭锦, 李占龙, 连晋毅, 闫晓燕, 张敏刚. 改性乙炔黑对锂硫电池电化学性能的影响[J]. 材料导报, 2020, 34(8): 8020-8024.
[3] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[4] 刘国熠, 赵晓明, 刘元军, 谌玉红. 不同隔热填料对双层涂层柔性复合材料热防护性能的影响[J]. 材料导报, 2020, 34(8): 8194-8199.
[5] 瑚佩, 姜勇刚, 张忠明, 冯军宗, 李良军, 冯坚. 耐高温、高强度隔热复合材料研究进展[J]. 材料导报, 2020, 34(7): 7082-7090.
[6] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[7] 薛耀辉, 蒋军彪, 张辉, 文昌秀, 苏宗锋, 崔晓霞, 郭海涛. 低膨胀β-锂霞石基复合材料的研究现状与进展[J]. 材料导报, 2020, 34(5): 5068-5077.
[8] 张美云, 罗晶晶, 杨斌, 刘国栋, 宋顺喜. 芳纶纳米纤维的制备及应用研究进展[J]. 材料导报, 2020, 34(5): 5158-5166.
[9] 张恒, 周玉惠, 张飞, 龚维, 何力. 聚丙烯/β-环糊精复合材料发泡性能及力学性能的研究[J]. 材料导报, 2020, 34(4): 4148-4152.
[10] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[11] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[12] 张雪飞, 白景元, 管仁国. 半固态搅拌参数对A356-10%B4Cp复合材料显微组织的影响[J]. 材料导报, 2020, 34(10): 10103-10107.
[13] 庄煜, 郭艳玲, 李健, 姜凯译, 于跃强, 张慧. 仿血管聚氨酯基复合材料的激光烧结工艺研究[J]. 材料导报, 2020, 34(10): 10177-10181.
[14] 任秦博,王景平,杨立,李翔,王学川. 用于电阻式柔性应变传感器的导电聚合物复合材料研究进展[J]. 材料导报, 2020, 34(1): 1080-1094.
[15] 齐云霞, 赵小伟, 杨永新, 黄冬维, 赵辉玲, 丁海生, 程广龙. TiO2基光电化学传感器电极结构调控的研究进展[J]. 材料导报, 2019, 33(Z2): 48-52.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed