Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 33-38    https://doi.org/10.11896/j.issn.1005-023X.2017.018.008
  材料研究 |
利用氧等离子体预处理增强聚对苯二甲酸乙二醇酯/聚吡咯导电复合薄膜的界面粘附性*
王闻宇1, 李诺2, 金欣2, 刘亚敏2, 肖长发2, 林童1,3
1 天津工业大学纺织学院,天津 300387;
2 天津工业大学材料科学与工程学院,分离膜与膜过程省部共建国家重点实验室,天津 300387;
3 澳大利亚迪肯大学,纤维材料创新中心,澳大利亚 吉朗 VIC3217
Improved Interfacial Adhesion of Polypyrrole Layer to Polyethylene Terephthalate Film by Oxygen Plasma Pretreatment
WANG Wenyu1, LI Nuo2, JIN Xin2, LIU Yamin2, XIAO Changfa2, LIN Tong1,3
1 School of Textile, Tianjin Polytechnic University, Tianjin 300387;
2 State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387;
3 Fiber Materials Innovation Center, Deakin University, Geelong, Australia, VIC3217
下载:  全 文 ( PDF ) ( 2150KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 首先对聚对苯二甲酸乙二醇酯(PET)薄膜进行氧等离子体预处理,然后通过原位化学氧化聚合法使得吡咯单体在PET薄膜表面沉积聚合,制备了聚对苯二甲酸乙二醇酯/聚吡咯(PET-PPy)复合膜。通过原子力显微镜、X射线光电子能谱仪、ζ电位测试对经不同时长的氧等离子体预处理的PET薄膜进行表征;利用扫描电子显微镜、耐磨性实验和表面电阻测试对PET-PPy复合膜磨损前后的表面形貌和电阻进行分析与表征。结果表明,氧等离子体预处理显著增强了PET-PPy复合膜界面粘附性。氧等离子体预处理使PET薄膜表面粗糙度增大、电负性显著增强。特别地,当预处理时间为120 s时,薄膜表面电负性明显增强,此时PET-PPy复合膜磨损后的电阻值变化最小,表明PET薄膜与PPy功能层界面粘附强度得到明显增强。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王闻宇
李诺
金欣
刘亚敏
肖长发
林童
关键词:  聚对苯二甲酸乙二醇酯(PET)薄膜  聚吡咯  氧等离子体  界面粘附  电负性    
Abstract: Polyethylene terephthalate (PET) films were pretreated with oxygen plasma firstly. Then, polypyrrole (PPy) functional layers were polymerized on the surface of PET films to form PET-PPy composite films by in situ chemical oxidation polymerization method. Atomic force microscopy, X-ray photoelectron spectroscopy and zeta potential measurement were used to characterize PET films pretreated with oxygen plasma for different durations. The surface morphology and electrical resistance of PET-PPy composite films before and after abrasion were investigated by scanning electron microscopy, abrasion resistance and sheet resistance measurements. The results showed that the interfacial adhesion of PPy functional layer to PET film is significantly improved by oxygen plasma pretreatment. The increased surface roughness and the enhanced electronegativity are the leading factors for the improved adhesion strength. In addition, the optimal pretreatment duration is 120 s.
Key words:  polyethylene terephthalate (PET) film    polypyrrole    oxygen plasma    interfacial adhesion    electronegativity
出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51573136;51103101);天津市自然科学基金(12JCYBJC17800;16JCTPJC45100);天津市科技计划项目(15PTSYJC00230;15PTSYJC00240;15PTSYJC00250)
通讯作者:  金欣:通讯作者,女,1972年生,博士,副教授,硕士研究生导师,研究方向为功能材料结构与性能 E-mail:jinxin29@126.com   
作者简介:  王闻宇:男,1972年生,博士,副教授,研究方向为功能纤维及非织造布制备与性能 E-mail:wwy-322@126.com
引用本文:    
王闻宇, 李诺, 金欣, 刘亚敏, 肖长发, 林童. 利用氧等离子体预处理增强聚对苯二甲酸乙二醇酯/聚吡咯导电复合薄膜的界面粘附性*[J]. 《材料导报》期刊社, 2017, 31(18): 33-38.
WANG Wenyu, LI Nuo, JIN Xin, LIU Yamin, XIAO Changfa, LIN Tong. Improved Interfacial Adhesion of Polypyrrole Layer to Polyethylene Terephthalate Film by Oxygen Plasma Pretreatment. Materials Reports, 2017, 31(18): 33-38.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.008  或          https://www.mater-rep.com/CN/Y2017/V31/I18/33
1 Yang Yaru, Niu Mei, Li Jingjing, et al. Preparation of carbon microspheres coated magnesium hydroxide and its application in po-lyethylene terephthalate as flame retardant[J]. Polym Degrad Stab, 2016, DOI:10.1016/j.polymdegradstab.2016.09.019.
2 Pasqui D, Barbucci R. Synthesis, characterization and self cleaning properties of titania nanoparticles grafted on polyester fabrics[J]. J Photochem Photobiol A: Chem, 2014,274(4):1.
3 Molina J, Fernandez J, Fernandes M, et al. Plasma treatment of polyester fabrics to increase the adhesion of reduced graphene oxide[J]. Synth Met, 2015,202(9):110.
4 Tkavc T, Petrinic I, Luxbacher T, et al. Influence of O2 and CO2 plasma treatment on the deposition of chitosan onto polyethylene terephthalate (PET) surfaces[J]. Int J Adhes Adhes, 2014,48(1):168.
5 Li K, Zhang H, Tang T, et al. Facile electrochemical polymerization of polypyrrole film applied as cathode material in dual rotating disk photo fuel cell[J]. J Power Sources, 2016,324:368.
6 Ghasemi M, Wan R W D, Hassan S H A, et al. Carbon nanotube/polypyrrole nanocomposite as a novel cathode catalyst and proper alternative for Pt in microbial fuel cell[J]. Int J Hydrogen Energy,2016,41(8):4872.
7 Ghasemi-Mobarakeh L, Prabhakaran M P, Morshed M, et al. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering[J]. J Tissue Eng Regen Med, 2011,5(5):e17.
8 Ferraz N, Stromme M, Fellstrom B, et al. In vitro and in vivo to-xicity of rinsed and aged nanocellulose-polypyrrole composites[J]. J Biomed Mater Res Part A, 2012,100A(8):2128.
9 Bettinger C J, Bruggeman J P, Misra A, et al. Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering[J]. Biomaterials, 2009,30(17):3050.
10Ruan Fangtao, Jin Xin, Wei Yijun, et al. Preparation of conductive PET fibers by alkali treatment and polypyrrole deposition[J]. J Text Res, 2012,33(2):1(in Chinese).
阮芳涛, 金欣, 韦毅俊,等. 碱处理/吡咯沉积制备聚酯导电纤维[J]. 纺织学报, 2012,33(2):1.
11Wang Ying, Chen Ying, Yue Bingfei, et al. Preparation and biocompatibility of gamma-aminopropyl triethoxysilane/polypyrrole/polyester monofilament[J]. Chin J Tissue Eng Res,2014(8):1244(in Chinese).
王莹, 陈莹, 岳秉飞,等. KH-550/PPy/PET单丝制备及生物相容性评价[J]. 中国组织工程研究,2014(8):1244.
12Mehmood T, Kaynak A, Dai X J, et al. Study of oxygen plasma pre-treatment of polyester fabric for improved polypyrrole adhesion[J]. Mater Chem Phys, 2014,143(2):668.
13Gupta N D, Das S, Das N S, et al. Improvement of adhesion and continuity of polypyrrole thin films through surface modification of hydrophobic substrates[J]. J Appl Polym Sci, 2014,131(2):218.
14Jin Xin, Wang Wenyu, Xiao Changfa, et al. Improvement of coating durability, interfacial adhesion and compressive strength of UHMWPE fiber/epoxy composites through plasma pre-treatment and polypyrrole coating [J]. Compos Sci Technol, 2016,128:169.15Molina J, Oliveira F R, Souto A P, et al. Enhanced adhesion of polypyrrole/PW12O403- hybrid coatings on polyester fabrics[J]. J Appl Polym Sci, 2013,129(1):422.
16Mehmood T, Dai X J, Kaynak A, et al. Improved bonding and conductivity of polypyrrole on polyester by gaseous plasma treatment[J]. Plasma Processes Polym, 2012,9(10):1006.
17Zhang X, Bai Renbi. Surface electric properties of polypyrrole in aqueous solutions[J]. Langmuir, 2003,19(26):10703.
18Sasso C, Fenoll M, Stephan O, et al. Use of wood derivatives as doping/dispersing agents in the preparation of polypyrrole aqueous dispersions[J]. Bioresources, 2008,3(4):1187.
19Zhang J, Chen P, Oh B H, et al. High capacitive performance of flexible and binder-free graphene-polypyrrole composite membrane based on in situ reduction of graphene oxide and self-assembly[J]. Nanoscale, 2013,5(20):9860.
[1] 郝璐, 于德梅. 聚吡咯纳米复合材料的研究进展[J]. 材料导报, 2023, 37(9): 21110151-10.
[2] 史国强, 薛冬峰. 电负性评估稀土离子电荷转移跃迁理论及在量子调控发光中的应用[J]. 材料导报, 2023, 37(3): 22110122-5.
[3] 安海霞, 王景平, 杨立, 杨百勤, 李喜飞. 聚吡咯涂层改性的高温自阻断锂离子电池及其性能[J]. 材料导报, 2021, 35(4): 4007-4011.
[4] 俞坤, 刘金香, 谢水波, 刘迎九, 葛玉杰. 聚吡咯/石墨相氮化碳复合材料吸附铀(Ⅵ)的性能与机制[J]. 材料导报, 2020, 34(23): 23020-23026.
[5] 王瑞, 李聃阳, 刘星, 方纾, 伏立松, 熊维成. 氧等离子体处理碳纳米管对剪切增稠液增强芳纶织物防刺性能的影响[J]. 材料导报, 2020, 34(18): 18188-18193.
[6] 薛秀丽,王世斌,曾超峰,李林安,王志勇. 柔性基底上金属薄膜的失效行为及界面能测试方法研究进展[J]. 材料导报, 2020, 34(1): 1050-1058.
[7] 张苗苗,刘旭燕,钱炜. 聚吡咯电极材料在超级电容器中的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 378-383.
[8] 张硕,于立岩. 不同水醇比条件下原位聚合的聚吡咯/石墨烯复合材料的电容性能*[J]. 材料导报编辑部, 2017, 31(10): 32-36.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed