Please wait a minute...
材料导报  2019, Vol. 33 Issue (3): 536-540    https://doi.org/10.11896/cldb.201903021
  高分子与聚合物基复合材料 |
BPCA分子标志物法对土壤体系中生物炭性质的描述
吴敏1, 吴丹萍1, 常兆峰1, 许燕2, 潘波1
1 昆明理工大学环境科学与工程学院,昆明 650500
2 云南省疾病预防控制中心,昆明 650022
Characterization of Biochars Properties in Soil System by BPCA MolecularBiomarkers
WU Min1, WU Danping1, CHANG Zhaofeng1, XU Yan2, PAN Bo1
1 Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500
2 Yunnan Center for Disease Prevention and Control, Kunming 650022
下载:  全 文 ( PDF ) ( 1217KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 生物炭因具有特殊的理化性质,在碳封存、土壤改良和污染控制领域的应用已成为全球性的热点问题。然而,不同来源、不同温度下形成的生物炭理化性质存在较大差异,且生物炭在进入土壤环境后,在生物和非生物的作用下,其数量和性质也会发生变化,这都将影响生物炭在环境系统中的迁移、转化和生物地球化学循环过程。显而易见,通过生物炭的初始状态预测其长期环境效应并不可行,但大部分的研究中都将生物炭视为一个静态组分,这不利于对生物炭施用安全和环境效应的客观评估。
为系统理解生物炭施用后的环境功效,客观上需要监控并动态描述其性质变化。遗憾的是,目前没有很好的方法将生物炭从土壤中分离出来,从而测定其含量和性质。如何在复杂混合体系中描述生物炭的性质,成为动态理解生物炭环境功效的主要技术难题。BPCA分子标志物法常用于描述土壤中炭黑或高缩合度有机质的含量并推演其燃烧历史,由于生物炭具有与其相似的高度芳香化结构单元,BPCA分子标志物法也适用于描述土壤体系中生物炭性质。
研究发现,BPCA分子标志物单体可以用于分析复杂体系中生物炭的相对含量,其单体比值(如B5CA/B6CA和B6CA/B4CA)不仅可用于描述生物炭及其老化后的性质(尤其是芳香缩合度)并辨析其来源,还能描述生物炭老化前后对有机污染物的吸附特性。而且BPCA分子标志物法可以促进研究者们对生物炭与土壤无机矿物之间相互作用机制的理解。此外,同位素技术还可作为BPCA分子标志物技术的一个重要补充,其中,针对BPCA单体的稳定同位素技术(如13C)能更准确地描述生物炭的迁移和转化。
本文归纳了BPCA分子标志物法在生物炭领域的研究进展,以及该法对复杂土壤体系中生物炭的定量、定性描述,分析了BPCA分子标志物法的优缺点并展望了其前景。BPCA分子标志物法有望成为生物炭环境行为和功能评估的重要技术手段,且该技术的发展和成熟,将大大推动生物炭研究的进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴敏
吴丹萍
常兆峰
许燕
潘波
关键词:  BPCA分子标志物法  炭黑  老化  稳定同位素  热源有机质    
Abstract: Biochar has become a global hot spot because of its special physicochemical properties and promising application potentials in carbon sequestration, soil remediation and pollution control. However, the physicochemical properties of biochar vary greatly due to its diverse feedstocks and temperatures. In addition, after being applied in soil, the quantities and characteristics of biochar change continuously under the biological and abiotic action, which will affect the migration, transformation and biogeochemical cycle of biochars in environmental systems. Obviously, predicting its long-term environmental effects through the initial state of biochar is not feasible, while most of the researches treated biochar as static component, which is not conducive to the objective evaluation of the safety and environmental effects of biochar.
In order to systematically understand the environmental effects of biochar application, it is necessary to dynamically describe and monitor changes in its properties. Unfortunately, there is no approved method available to separate biochar from the soil for determining its content and properties currently. How to describe the properties of biochar in a complex hybrid system has become a major technical obstacle for dynamic understanding the affect of biochar environment. The benzene polycarboxylic acid (BPCA) molecular biomarker method is generally used to describe the content of carbon black or high condensed organic matter in soil and deduce its combustion history. Since biochar has similar highly aromatic structural units with carbon black, the method is suitable for describing the properties of biochar in soil systems as well.
It was demonstrated that the BPCA method can be used to quantitatively or qualitatively analyze the relative content of biochar in complex systems. The monomer ratios (such as B5CA/B6CA and B6CA/B4CA) can not only describe the properties of biochar, its before/post-aging (especially the degree of aromatic condensation) and deduce its sources, but also indicate the adsorption properties of biochar (before/after aging) to organic pollutants. Moreover, the BPCA molecular marker method can promote the understanding of the interaction mechanisms between biochar and inorganic minerals in soil. In addition, isotope techniques can also be a vital complement to BPCA molecular marker technology, where stable isotope techniques for BPCA monomers (i.e.13C) can more accurately describe the migration and transformation of biochar.
This review summarizes the research progress of BPCA molecular marker method in biochar field, and describes the quantitative and qualitative properties of biochar in complex soil systems. The merits and dismerits of BPCA method are analyzed and its prospects are forecasted. BPCA molecular marker method is expected to be a crucial technical means for biochar environmental behavior and function assessment, and the development and maturity of this technology will greatly promote the progress of biochar research.
Key words:  BPCA biomarker method    black carbon    aging    stable isotope    pyrogenic organic matter
               出版日期:  2019-02-10      发布日期:  2019-02-13
ZTFLH:  TH3  
基金资助: 国家自然科学基金(41663013;U1602231)
作者简介:  吴敏,昆明理工大学环境科学与工程学院教授、博士研究生导师,2002年7月本科毕业于武汉大学环境科学系,2005年7月在北京大学城市与环境学院取得硕士学位,2012年7月在昆明理工大学取得博士学位,2014—2015在美国麻省大学农学院进行博士后研究工作。主要针对生物炭在土壤修复、土壤改良、生物毒理学中的关键科学问题展开基础性研究。286392468@qq.com
引用本文:    
吴敏, 吴丹萍, 常兆峰, 许燕, 潘波. BPCA分子标志物法对土壤体系中生物炭性质的描述[J]. 材料导报, 2019, 33(3): 536-540.
WU Min, WU Danping, CHANG Zhaofeng, XU Yan, PAN Bo. Characterization of Biochars Properties in Soil System by BPCA MolecularBiomarkers. Materials Reports, 2019, 33(3): 536-540.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201903021  或          http://www.mater-rep.com/CN/Y2019/V33/I3/536
1 Glaser B, Parr M, Braun C, et al. Nature Geoscience,2009,2(1),2.
2 Lehmann J, Rondon M. Biological approaches to sustainable soil systems, CRC Press, Boca Raton,2006.
3 Zimmerman A R, Gao B, Ahn M-Y. Soil Biology and Biochemistry,2011,43(6),1169.
4 Zimmerman A R. Environmental Science & Technology,2010,44(4),1295.
5 Singh B P, Cowie A L, Smernik R J. Environmental Science & Technology,2012,46(21),11770.
6 Kaiser K, Guggenberger G. Organic Geochemistry,2000,31(7-8),711.
7 Woo S H, Park J M. Journal of Industrial and Engineering Chemistry,2004,10(1),16.
8 Kuzyakov Y, Bogomolova I, Glaser B. Soil Biology and Biochemistry,2014,70,229.
9 Lützow M V, Kögel-Knabner I, Ekschmitt K, et al. European Journal of Soil Science,2006,57(4),426.
10 Yang W F, Guo L D. Geophysical Research Letters,2014,41(21),7619.
11 Wang Q, Liu M, Yu Y P, et al. Applied Geochemistry,2014,47,36.
12 Bird M I, Ascough P L. Organic Geochemistry,2012,42(12),1529.
13 Kuo L J, Louchouarn P, Herbert B E. Chemosphere,2011,85(5),797.
14 Glaser B, Haumaier L, Guggenberger G, et al. Organic Geochemistry,1998,29(4),811.
15 Chang Z, Tian L, Li F, et al. Science of the Total Environment,2018,626,660.
16 Chang Z, Tian L, Wu M, et al. Environmental Pollution,2018,237,541.
17 Tian L P, Chang Z F, Wang P, et al. Environmental Chemistry,2017,36(4),738(in Chinese).
田路萍,常兆峰,王朋,等.环境化学,2017,36(4),738.
18 Brodowski S, Rodionov A, Haumaier L, et al. Organic Geochemistry,2005,36(9),1299.
19 Borchard N, Ladd B, Eschemann S, et al. Geoderma,2014,s232-234(12),236.
20 Sánchez-García L, Andrés J R D, Gélinas Y, et al. Marine Chemistry,2013,151,13.
21 Gaviño M, Hermosin B, Vergèsbelmin V, et al. Journal of Separation Science,2004,27(7-8),513.
22 Khan A L, Jaffé R, Ding Y, et al. Geophysical Research Letters,2016,43(11),5750.
23 Ballentine D C, Macko S A, Turekian V C. Chemical Geology,1998,152(1),151.
24 Schneider M P W, Smittenberg R H, Dittmar T, et al. Organic Geoche-mistry,2011,42(3),275.
25 Schneider M P W, Hilf M, Vogt U F, et al. Organic Geochemistry,2010,41(10),1082.
26 Cerqueira W V, Rittl T F, Novotny E H, et al. Analytical Methods,2015,7(19),8190.
27 Xiao X, Chen Z, Chen B. Scientific Reports,2016,6,22644.
28 Peng H, Gao P, Chu G, et al. Environmental Pollution,2017,229,846.
29 Krull E S, Swanston C W, Skjemstad J O, et al. Journal of Geophysical Research-Biogeosciences,2006,111(G4),1.
30 Schneider M P, Pyle L A, Clark K L, et al. Environmental Science & Technology,2013,47(20),11490.
31 Budai A, Calucci L, Rasse D P, et al. Journal of Analytical and Applied Pyrolysis,2017,128,335.
32 Hammes K, Torn M S, Lapenas A G, et al. Biogeosciences Discussions,2008,5(1),1339.
33 Brodowski S, Amelung W, Haumaier L, et al. Geoderma,2005,128(1),116.
34 Wolf M, Lehndorff E, Wiesenberg G L, et al. Organic Geochemistry,2013,55(1),11.
35 Boot C M, Haddix M, Paustian K, et al. Biogeosciences,2015,12(10),3029.
36 Li F, Pan B, Zhang D, et al. Scientific Reports,2015,5,1.
37 Lehndorff E, Roth P J, Cao Z H, et al. Global Change Biology,2014,20(6),1968.
38 Laskov C, Amelung W, Peiffer S. Environmental Science & Technology,2002,36(20),4218.
39 Brodowski S, Amelung W, Haumaier L, et al. Geoderma,2007,139(1-2),220.
40 Hammes K, Schmidt M W I, Smernik R J, et al. Global Biogeochemical Cycles,2007,21(3),GB3016.
41 Xing B S, Pignatello J J. Environmental Science & Technology,1998,32(5),614.
42 Xiao D, Pan B, Wu M, et al. Chemosphere,2012,86(2),183.
43 Zheng H, Wang Z Y, Zhao J, et al. Environmental Pollution,2013,181,60.
44 Qian L, Chen M, Chen B. Journal of Soils & Sediments,2015,15(5),1130.
45 Hammes K, Torn M S, Lapenas A G, et al. Biogeosciences,2008,5(5),1339.
46 Singh N, Abiven S, Maestrini B, et al. Global Change Biology,2014,20(5),1629.
47 Abiven S, Hengartner P, Schneider M P W, et al. Soil Biology & Biochemistry,2011,43(7),1615.
48 Knicker H. Quaternary International,2011,243(2),251.
49 Boutton T W, Archer S R, Midwood A J, et al. Geoderma,1998,82(1),5.
50 Ehleringer J R, Buchmann N, Flanagan L B. Ecological Applications,2000,10(2),412.
51 Rodionov A, Amelung W, Peinemann N, et al. Global Biogeochemical Cycles,2010,24,1.
52 Cotrufo M F, Boot C M, Kampf S, et al. Global Biogeochemical Cycles,2016,30(9),1348.
53 Glaser B, Knorr K H. Rapid Communications in Mass Spectrometry,2008,22(7),935.
54 Wiedemeier D B, Lang S Q, Gierga M, et al. Journal of Visualized Expe-riments,2016,111,e53922.
55 Lehndorff E, Brodowski S, Schmidt L, et al. Organic Geochemistry,2015,80,46.
56 Yarnes C, Santos F, Singh N, et al. Rapid Communications in Mass Spectrometry,2011,25(24),3723.
[1] 王留成, 薛蕾, 郭丹丹, 李伊光, 陈冲冲. 热解温度对竹炭黑基本性能的影响[J]. 材料导报, 2019, 33(8): 1285-1288.
[2] 廖明义, 宋雅婷. 阴离子合成POSS端基官能化聚丁二烯与白炭黑相互作用[J]. 材料导报, 2019, 33(2): 352-356.
[3] 王蒙, 宋海硕, 郭建兵. 阻燃型玻纤增强尼龙10T复合材料的热氧老化行为及热降解动力学[J]. 《材料导报》期刊社, 2018, 32(8): 1344-1351.
[4] 杨守禄, 罗莎, 章磊, 姬宁, 李丹, 吴义强. 木塑复合材料功能化改性研究进展[J]. 材料导报, 2018, 32(17): 3090-3098.
[5] 于江, 程龙, 李林萍, 叶奋, 宋卿卿. KSHD温拌剂对新疆岩沥青改性沥青老化动力特性的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2418-2424.
[6] 崔亚楠,于庆年,韩吉伟,陈超. 复杂气候条件下胶粉改性沥青的低温性能[J]. 《材料导报》期刊社, 2018, 32(12): 2078-2084.
[7] 文钰斌, 刘新红, 顾强, 陈晓雨, 贾全利, 杨林, 马腾. 不同碳源对纳米锌铝尖晶石合成及颗粒粒径的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 109-113.
[8] 李兵, 周子皓, 尹传强, 魏秀琴, 周浪. 氧化硅形态对合成氮氧化硅粉体的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 114-118.
[9] 李海莲, 李波, 王起才, 李良英, 王永宁. 基于表面能理论的老化温拌SBS改性沥青结合料的粘附性*[J]. 《材料导报》期刊社, 2017, 31(16): 129-133.
[10] 史才军, 汪越, 潘晓颖, 张健. 混凝土无机表面处理技术研究进展[J]. 《材料导报》期刊社, 2017, 31(13): 113-119.
[11] 张欢, 许文, 邹士文, 张新兰. 环氧胶粘剂及其胶接界面热氧老化机理研究[J]. 《材料导报》期刊社, 2017, 31(12): 104-108.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed