Please wait a minute...
材料导报  2019, Vol. 33 Issue (3): 522-535    https://doi.org/10.11896/cldb.201903020
  高分子与聚合物基复合材料 |
聚集诱导发红光材料在生物成像领域的应用
赵秋丽, 卞洁鹏, 杨庆浩, 彭龙贵, 王志华, 后振中, 李颖
西安科技大学材料科学与工程学院,西安 710054
Application of Aggregation-induced Red Emission Materials in Bioimaging
ZHAO Qiuli, BIAN Jiepeng, YANG Qinghao, PENG Longgui, WANG Zhihua, HOU Zhenzhong, LI Ying
College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054
下载:  全 文 ( PDF ) ( 4220KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年,荧光生物成像技术在生物医学领域发展迅速,为生命科学的研究和疾病诊断提供了一种可视化手段。有机荧光染料是一类常用的荧光试剂,具有种类繁多、化学结构和发光颜色易于调节等优势。然而,有机荧光染料大都具有较高的共轭程度和刚性的平面结构,在其良溶剂中发光强烈。由于其疏水性较强,在生物体内容易聚集,导致荧光强度急剧下降,表现出聚集导致荧光猝灭(ACQ)效应,使荧光信号大幅减弱。严重的ACQ效应大大限制了有机染料在荧光成像技术中的实际应用。
聚集诱导发光(AIE)材料在溶液中发光微弱甚至不发光,在聚集状态或固态下发出强烈的荧光。聚集是疏水性基团的本性,AIE材料聚集后荧光强度显著增大,这与ACQ材料恰恰相反,从根本上克服了ACQ效应。自AIE材料被发现以来,因其独特的发光性能,引起了各国科研工作者的极大兴趣。随着AIE材料发光机理的揭示,众多的AIE分子被设计合成出来,并在有机发光二极管、荧光探针和生物成像等领域展现出巨大的应用潜力。
大部分AIE材料发射蓝光、绿光或黄光,发射红光的AIE材料种类和数量十分有限。然而,红光AIE材料是基础研究和应用研究中必不可少的要素之一,其兼具发射红光和AIE特性,在生物成像领域具有诸多优势。一方面,红光具有穿透能力强、激发能量低、背景荧光干扰小等优点;另一方面,红光AIE分子聚集后能发出强烈的荧光,可以将其应用于生物成像以获得高亮度的荧光;由红光AIE分子制备的纳米粒子,抗光漂白性较强,同时低毒、可控,有望替代无机量子点应用于生物分析和医学成像领域。因此,红光AIE材料在生物成像领域的前景十分广阔。
本文列举了一些具有代表性的红光AIE材料,重点介绍红光AIE小分子、物理包覆红光AIE分子形成的纳米粒子、共价键连接红光AIE分子与聚合物形成的纳米粒子及基于红光AIE分子的氧化硅纳米粒子在细胞成像、动物成像等生物成像领域的应用,并对红光AIE材料的设计及其在生物成像领域的应用进行了展望,以期为红光AIE分子的设计制备和应用研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵秋丽
卞洁鹏
杨庆浩
彭龙贵
王志华
后振中
李颖
关键词:  聚集诱导发光  红光  生物成像  纳米粒子    
Abstract: Recently, fluorescent bioimaging technology has developed rapidly in the field of biomedical research, providing a direct visualization method for life science research and disease diagnosis. Organic fluorescent dyes are commonly used fluorescent reagents with the merits of great diversity, tunable structures and emission colors. However, organic fluorescent dyes mostly possess extended π-conjugation and rigid planar conformations, they also emit strong fluorescence in good solvent. By virtue of the strong hydrophobic property, they are prone to form aggregates in the living body, resulting in a sharp decrease in fluorescence intensity and weak fluorescence signals. This phenomenon is termed as “aggregation-caused quenching (ACQ)”, which severely limits the practical application of organic dyes in fluorescence imaging technology.
Aggregation-induced emission (AIE) materials show faint emission or even non-emission when dissolved in good solvents, while exhibit intensive fluorescence emission in the aggregate and/or solid states. Aggregation is the nature of hydrophobic group, the fluorescence intensity of AIE materials increases significantly after aggregation, which fundamentally overcomes the defects of ACQ materials. Due to the unique fluorescence property, AIE materials have attracted great attention from researchers worldwide since they were discovered. A large number of AIE molecules have been synthesized, and they have shown great application potential in the field of organic light-emitting devices (OLEDs), fluorescent chemosensors, bioassays and bioimaging.
The majority of AIE materials are blue, green or yellow emitters, only very few are red ones. However, red emitting AIE materials with red fluorescence and AIE features are indispensible in both fundamental research and applied research, which have a variety of advantages in the field of bioimaging. On the one hand, red fluorescence possesses strong penetration ability, low excitation energy and faint background fluorescence interference. On the other hand, red emissive AIE molecules aggregate to emit strong fluorescence, therefore, they can be applied in bioimaging to enhance fluorescence intensity. Besides, nanoparticles (NPs) with strong photobleaching resistance, low toxicity and controllabilty can be prepared via red emissive AIE molecules, which are expected to be the substitution of inorganic quantum dots for applications in biological assays and medical imaging. Therefore, red emissive AIE materials have a wide application prospect in bioimaging.
In this paper, a series of representative red emissive AIE materials are demonstrated, red emissive AIE small molecules, nanoparticles formed by physical cladding red emissive AIE molecules, covalently bonded red emissive AIE molecules and copolymer, and the application of silica na-noparticles based on the red emissive AIE molecules in bioimaging such as cell imaging and in vivo imaging are highlighted. Finally, a brief outlook on the design of red emissive AIE materials and the application prospect of the red AIE materials in bioimaging are proposed, aiming at providing a reference for the further investigation and application.
Key words:  aggregation-induced emission    red emission    bioimaging    nanoparticles
               出版日期:  2019-02-10      发布日期:  2019-02-13
ZTFLH:  O621.2  
基金资助: 国家自然科学基金(2120472);陕西省自然科学基础研究计划资助项目(2016JQ5078);陕西省教育厅项目(16JK1515);国家级大学生创新训练项目(201710704015)
作者简介:  赵秋丽,2012年6月毕业于浙江大学,获得工学博士学位。现在西安科技大学材料学院工作。主要研究方向是功能AIE材料的制备、性能与应用研究。zhao33521627@126.com
引用本文:    
赵秋丽, 卞洁鹏, 杨庆浩, 彭龙贵, 王志华, 后振中, 李颖. 聚集诱导发红光材料在生物成像领域的应用[J]. 材料导报, 2019, 33(3): 522-535.
ZHAO Qiuli, BIAN Jiepeng, YANG Qinghao, PENG Longgui, WANG Zhihua, HOU Zhenzhong, LI Ying. Application of Aggregation-induced Red Emission Materials in Bioimaging. Materials Reports, 2019, 33(3): 522-535.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201903020  或          http://www.mater-rep.com/CN/Y2019/V33/I3/522
1 Newman R H, Fosbrink M D, Zhang J. Chemical Reviews,2011,111(5),3614.
2 Kobayashi H, Ogawa M, Alford R, et al. Chemical Reviews,2010,110(5),2620.
3 Traina C A, Bakusll R C, Bazan G C. Journal of the American Chemical Society,2011,133(32),12600.
4 Birks J B. Photophysics of aromatic molecules, Wiley,1970.
5 Luo J D, Xie Z L, Lam J W Y, et al. Chemical Communications,2001,18,1740.
6 Mei J, Leung N L C, Kwok R T K, et al. Chemical Reviews,2015,115(21),11718.
7 Hong Y N, Lam J W Y, Tang B Z. Chemical Communications,2009,29,4332.
8 Zhang S, Qin A J, Sun J Z, et al. Progress in Chemistry,2011,23(4),623(in Chinese).
张双,秦安军,孙景志,等.化学进展,2011,23(4),623.
9 Zhao Q L, Wang J L, Yang Q H, et al. Materials Review B: Research Papers,2017,31(4),6(in Chinese).
赵秋丽,王金磊,杨庆浩,等.材料导报:研究篇,2017,31(4),6.
10 Zhao Q L, Sun J Z. Journal of Materials Chemistry C,2016,4(45),10588.
11 An B K, Kwon S K, Jung S D, et al. Journal of the American Chemical Society,2002,124(48),14410.
12 Yoon S J, Chung J W, Gierschner J, et al. Journal of the American Chemical Society,2010,132(39),13675.
13 Yoon S J, Park S Y. Journal of Materials Chemistry,2011,21(23),8338.
14 Shao A D, Xie Y S, Zhu S J, et al. Angewandte Chemie Internationel Edition,2015,54(25),7275.
15 Wang D, Su H F, Kwok R T K, et al. Advanced Functional Materials,2017,27(46),1704039.
16 Ye Q, Chen S S, Zhu D D, et al. Journal of Materials Chemistry B,2015,3(15),3091.
17 Weil T, Vosch T, Hofkens J, et al. Angewandte Chemie Internationel Edition,2010,49(48),9068.
18 Wu W C, Yeh H C, Chan L H, et al. Advanced Materials,2002,14(15),1072.
19 Chiang C L, Wu M F, Dai D C, et al. Advanced Functional Materials,2005,15(2),231.
20 Zhao Q L, Li K, Chen S M, et al. Journal of Materials Chemistry,2012,22(30),15128.
21 Zhao Q L, Zhang S, Liu Y, et al. Journal of Materials Chemistry,2012,22(15),7387.
22 Li K, Ding D, Zhao Q L, et al. Science China Chemistry,2013,56(9),1228.
23 Beaujuge P M, Fréchet J M J. Journal of the American Chemical Society,2011,133(50),20009.
24 Qu Y, Hua J L, Tian H. Organic Letters,2010,12(15),3320.
25 Gao Y T, Feng G X, Jiang T, et al. Advanced Functional Materials,2015,25(19),2857.
26 Chen C T. Chemistry of Materials,2004,16(23),4389.
27 Guo Z Q, Zhu W H, Tian H. Chemical Communications,2012,48(49),6073.
28 Qin W, Ding D, Liu J Z, et al. Advanced Functional Materials,2012,22(4),771.
29 Geng J L, Li K, Ding D, et al. Small,2012,8(23),3655.
30 Li K, Qin W, Ding D, et al. Science Reports,2013,3,1150.
31 Wang D, Qian J, Qin W, et al. Science Reports,2014,4,4279.
32 Li K, Zhu Z S, Cai P Q, et al. Chemistry of Materials,2013,25(21),4181.
33 Geng J L, Zhu Z S, Qin W, et al. Nanoscale,2014,6(2),939.
34 Geng J L, Li K, Qin W, et al. Small,2013,9(11),2012.
35 Li K, Ding D, Qin W, et al. Advanced Healthcare Materials,2013,2(12),1600.
36 Ding D, Mao D, Wang X M, et al. ACS Nano,2014,8(12),12620.
37 Qin W, Li K, Feng G X, et al. Advanced Functional Materials,2014,24(5),635.
38 Nicol A, Qin W, T. K. Kwok, et al. Chemical Science,2017,8(6),4634.
39 Chen S Y, Xu X J, Liu Y Q, et al. Advanced Functional Materials,2005,15(9),1541.
40 Nicol A, Kwok T K, Chen C P, et al. Journal of the American Chemical Society,2017,139(41),14792.
41 Gao M, Su H F, Lin G W, et al. Nanoscale,2016,8(36),15027.
42 Yu C Y Y, Zhang W J, Kwok T K, et al. Journal of Materials Chemistry B,2016,4(15),2614.
43 Mahtab F, Lam W Y, Liu J Z, et al. Advanced Functional Materials,2011,21(9),1733.
44 Wang Z L, Yan L L, Zhang L, et al. Polymer Chemistry,2014,5(24),7013.
45 Liu J N, Bu W B, Pan L M, et al. Biomaterials,2012,33(29),7282.
46 Kang B, Mackey M A, EI-Sayed M A. Journal of the American Chemical Society,2010,132(5),1517.
47 Yeh H C, Yeh S J, Chen C T. Chemical Communications,2003,20,2632.
48 Wu W C, Chen C Y, Tian Y Q, et al. Advanced Functional Materials,2010,20(9),1413.
49 Ji G, Yan L L, Wang H, et al. Acta Chimica Sinica,2016,74(11),917(in Chinese).
纪光,闫路林,王慧,等.化学学报,2016,74(11),917.
50 Zhang X, Zhang X, Tao L, et al. Journal of Materials Chemistry B,2014,2(28),4398.
51 Li K, Liu B. Chemical Society Reviews,2014,43(18),6570.
52 Yan L L, Zhang Y, Xu B, et al. Nanoscale,2016,8(5),2471.
53 Mao L C, Liu M Y, Xu D Z, et al. Applied Surface Science,2017,423,469.
54 Wan Q, Jiang R M, Mao L C, et al. Materials Chemistry Frontiers,2017,1(6),1051.
55 Jiang R M, Liu M Y, Chen T T, et al. Dyes and Pigments,2018,148,52.
56 Ma C P, Xie G Y, Zhang X Q, et al. Journal of Materials Chemistry B,2016,4(48),8009.
57 Xu D Z, Zou H, Liu M Y, et al. Journal of Colloid and Interface Science,2017,508,248.
58 Wan Q, Zeng G J, He Z Y, et al. Journal of Materials Chemistry B,2016,4(34),5692.
59 Li D D, Yu J H. Small,2016,12(47),6478.
60 Jiao L, Song F L, Zhang B Y, et al. Journal of Materials Chemistry B,2017,5(26),5278.
61 Kim S, Pudavar H E, Bonoiu A, et al. Advanced Materials,2007,19(22),3791.
62 Hao X J, Zhou M J, Zhang X J, et al. Chemical Communications,2014,50(6),737.
[1] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[2] 韩贵华, 张宝林, 苏礼超, 黄银平, 范子梁, 赵应征. 二肉豆蔻酰磷脂酰胆碱修饰的氧化铁纳米粒子在PC-12细胞内的分布[J]. 材料导报, 2019, 33(6): 1047-1051.
[3] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[4] 陈道鸽, 熊向源, 龚妍春, 李资玲, 李玉萍. 含Pluronic高分子纳米粒子在药物释放体系的研究现状[J]. 材料导报, 2019, 33(3): 517-521.
[5] 刘文, 李婷婷, 张冰, 张荣, 刁海鹏, 常宏宏, 魏文珑. 基于绿色天然物质合成荧光碳点及其性质和应用综述[J]. 材料导报, 2019, 33(3): 402-409.
[6] 魏波,周金堂,姚正军,钱逸,钱崑. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17): 2976-2988.
[7] 王爱国,郑毅,张祖华,刘开伟,马瑞,孙道胜. 地聚物胶凝材料改性提高混凝土耐久性的研究进展[J]. 材料导报, 2019, 33(15): 2552-2560.
[8] 冯爱玲,徐榕,王彦妮,张亚妮,林社宝. 核壳型稀土上转换纳米材料及其生物医学应用[J]. 材料导报, 2019, 33(13): 2252-2259.
[9] 肖治国,成岳,唐伟博,余宏伟. 核壳磁性纳米粒子在环境治理中的应用进展[J]. 材料导报, 2019, 33(13): 2174-2183.
[10] 韦晶, 韩希思, 张承武, 吴琼, 秦晓飞, 李林, 余昌敏, 黄维. 微小RNA纳米递送体系的构建及其研究进展[J]. 材料导报, 2019, 33(1): 16-26.
[11] 吴英柯,马建中,鲍艳. 聚合物基纳米复合材料的界面作用研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 434-442.
[12] 谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
[13] 丁昂, 张钟元, 程厅, 董星龙. 中空硅纳米球锂离子电池负极材料的制备及电化学性能[J]. 《材料导报》期刊社, 2018, 32(11): 1791-1794.
[14] 赵秋丽, 王金磊, 杨庆浩, 陈进, 后振中. 烷基链长对四苯基乙烯衍生物聚集行为和光学性质的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 6-10.
[15] 彭红,刘洋,张锦胜,郑洪立,阮榕生. 基于毛竹半纤维素的银纳米粒子的绿色合成*[J]. 材料导报编辑部, 2017, 31(22): 35-42.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed