Please wait a minute...
材料导报  2019, Vol. 33 Issue (3): 517-521    https://doi.org/10.11896/cldb.201903019
  高分子与聚合物基复合材料 |
含Pluronic高分子纳米粒子在药物释放体系的研究现状
陈道鸽, 熊向源, 龚妍春, 李资玲, 李玉萍
江西科技师范大学生命科学学院,南昌 330013
Research and Application of Polymeric Nanoparticles Containing Pluronic in Drug Release System: a Review
CHEN Daoge, XIONG Xiangyuan, GONG Yanchun, LI Ziling, LI Yuping
School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013
下载:  全 文 ( PDF ) ( 1421KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 化疗是目前治疗癌症最有效的手段之一,但是化疗所使用的抗癌药物大多具有很强的副作用,并且会出现多药耐药现象。多数副作用由抗癌药物不能辨别肿瘤组织和正常组织所引起。而高分子纳米粒子可以作为药物载体包埋抗癌药物,具有靶向和智能化功能的高分子纳米粒子药物载体赋予药物一定的选择性,可减少药物对正常组织的毒副作用。此外,高分子纳米粒子制成的药物传递系统具有低毒、高效和缓释等优点。
研究者们制备了多种高分子药物载体用于抗癌药物的递送,以期减少抗癌药物引起的副作用和改善药物耐药现象。Pluronic是一类人工合成的两亲性高分子材料,它具有无毒、生物相容性好、无免疫原性和抗肿瘤多药耐药性等生物学特性和易于化学修饰的理化性质。因此,含Pluronic的高分子纳米粒子作为药物载体在抗癌药物的递送方面受到了广泛的关注。Pluronic形成的高分子纳米粒子的粒径较小,能够被动靶向到肿瘤组织,减少了药物对正常组织的毒性。
化学修饰的Pluronic所形成的纳米粒子不仅具有纳米级别的粒径,还具有更多优越的性质。抗体、靶向小分子和生物素修饰的Pluronic赋予载体主动靶向到肿瘤组织的特性;磁性材料的修饰使含Pluronic的纳米粒子具有磁性,在一定磁强度下,该材料包埋的药物能够定位聚集到组织中;一些pH敏感和氧化还原材料的修饰,赋予载体pH和氧化还原敏感性。由此制备的智能化药物载体包埋抗癌药物,能够响应肿瘤组织的环境变化而刺激药物释放。同时,也有研究者制备出双靶向的含Pluronic的药物载体,此载体的靶向效果优于单独靶向的药物载体。未来靶向和智能化药物载体的制备,将进一步提高药物的治疗效果。
本文主要归纳了含Pluronic的高分子纳米粒子在靶向和智能药物释放体系的研究现状,其中靶向药物释放体系包括主动靶向、被动靶向和物理靶向等,智能药物释放体系包括pH敏感型和还原敏感型等。重点总结了载体的纳米性质、药物释放、靶向和刺激响应性能等,以期为更多疗效好但溶解性差、副作用大的药物的递送提供新的思路,为Pluronic在生物医药材料的广泛应用提供一定的参考和依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈道鸽
熊向源
龚妍春
李资玲
李玉萍
关键词:  Pluronic  纳米粒子  靶向  智能载体  药物释放体系    
Abstract: It is universally believed that chemotherapy is one of the most effective approaches to deal with cancer at present, nevertheless most anticancer drugs adopted in chemotherapy show strong side effects and multidrug resistance. The majority of the side effects are derived from the inability of anticancer drugs to distinguish between tumor tissues and normal tissues. Polymer nanoparticles can be used as drug carriers to embed anti-cancer drugs, which endow drugs with certain selectivity and can reduce toxicity and side effects of drugs on normal tissues owing to their targeted and intelligent functions. Besides, the drug delivery system made of polymer nanoparticles exhibit advantages of low toxicity, high efficiency and sustained release, etc.
A variety of high-molecular carriers has been prepared for delivery of anticancer drugs, for the sake of attenuating the side effects caused by anticancer drugs and relieving drug resistance. Pluronic is a kind of synthetic amphiphilic polymer material, showing its superiority in no toxicity, favorable biocompatibility, no immunogenicity, anti-tumor multidrug resistance and feasibility for chemical modification. Therefore, the study of polymer nanoparticles containing Pluronic as drug carriers has aroused numerous interests in the field of anticancer drugs delivery. The polymer nanoparticles formed by Plurnoics are small in size and can be passively targeted to tumor tissues, thus reducing toxicity of drugs to normal tissues.
In addition to the nanoscale particles size, the nanoparticles formed by chemically modified Pluronic possess many other superior properties. Pluronic modified by antibody, targeting small molecules and biotin is conductive to realize the active targeting to tumor tissues of carriers. The modification of the magnetic material endows Pluronic nanoparticles with magnetism, which enables the encapsulated drugs localize and aggregate into the tumor tissue under a certain magnetic intensity. The introduction of some pH sensitive and redox materials have equipped Pluronic nanoparticles with pH and oxidation-reduction sensitivities. The prepared intelligent drug carrier encapsulated anticancer drugs can respond to the environmental variations of tumor tissues and stimulate drug release. Meanwhile, double-targeting drug carrier containing Pluronic have been also prepared successfully, which presents better targeting effect than single-targeting one. The development of targeted and intelligent drug carriers in the future can further improve the therapeutic effect of drugs.
This article offers a summary of the research status of polymer nanoparticles containing Pluronic in targeting and intelligent drug delivery systems, the former includes active targeting, passive targeting and physical targeting, the latter includes pH-sensitive and reduction-sensitive systems. Emphasis is put on the nano-properties, drug release, targeting and stimulation response properties of carriers. We would like to provide new ideas for the delivery of drugs with good efficacy, but poor solubility and side effects, and provide some reference and basis for the wide application of Pluronic in biomedical material fields.
Key words:  Pluronic    nanoparticles    targeting    intelligent carrier    drug delivery system
               出版日期:  2019-02-10      发布日期:  2019-02-13
ZTFLH:  TB324  
基金资助: 家自然科学基金(21664007);江西省主要学科学术和技术带头人培养计划(20153BCB22009);江西省高等学校科技落地计划(KJLD13071);江西省研究生创新专项资金(YC2017-S411);江西省青年科学基金(20151BAB215048)
作者简介:  陈道鸽,2016年6月毕业于河南科技大学,获得理学学士学位。现为江西科技师范大学生命科学学院硕士研究生,在熊向源教授的指导下进行研究。目前主要研究领域为高分子生物医药材料。熊向源,江西科技师范大学,教授,2005年获新加坡南洋理工大学博士学位。江西省主要学科学术和技术带头人,2009年江西省百千万人才工程人选。中国化学会会员。主要从事纳米级高分子药物载体的研究,尤其是口服胰岛素高分子纳米囊泡载体、紫杉醇靶向纳米载体等。xyxiong@gmail.com
引用本文:    
陈道鸽, 熊向源, 龚妍春, 李资玲, 李玉萍. 含Pluronic高分子纳米粒子在药物释放体系的研究现状[J]. 材料导报, 2019, 33(3): 517-521.
CHEN Daoge, XIONG Xiangyuan, GONG Yanchun, LI Ziling, LI Yuping. Research and Application of Polymeric Nanoparticles Containing Pluronic in Drug Release System: a Review. Materials Reports, 2019, 33(3): 517-521.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201903019  或          http://www.mater-rep.com/CN/Y2019/V33/I3/517
1 Du Z Z, Zhang Y, Xu H, et al. Journal of Materials Chemistry B,2015,3(18),3685.
2 Zhang M J, Jing S S, Zhang J, et al. Journal of Materials Chemistry B,2017,5(21),3970.
3 Pitto-Barry A, Barry N P E. Polymer Chemistry,2014,5(10),3291.
4 Oerlemans C, Bult W, Bos M, et al. Pharmaceutical Research,2010,27,2569.
5 Wang Y, Liu E G, Sun X Y, et al. Polymer Chemistry,2013,4(10),2958.
6 Chen G J, Su Y Z, Hsu C, et al. Journal of Materials Chemistry B,2014,2(34),5666.
7 She W C, Pan D, Luo K, et al. Journal of Biomedical Nanotechnology,2015,11(6),964.
8 Song H, He R, Wang K, et al. Biomaterials,2010,31(8),2302.
9 Choi W I, Lee J H, Kim J Y, et al. Nanomedicine,2015,11(2),359.
10 Tavano L, Muzzalupo R, Mauro L, et al. Langmuir,2013,29(41),12638.
11 Tavano L, Mauro L, Naimo GD, et al. Langmuir,2016,32(35),8926.
12 Huang Y K, Liu W, Gao F, et al. International Journal of Nanomedicine,2016,11,1629.
13 Niu J X, Wang A D, Ke Z C,et al. Journal of Drug Target,2014,22(8),712.
14 Luo Y Y, Xiong X Y, Cheng F, et al. International Journal of Biological Macromolecules,2017,105,711.
15 Li Y M, Zhou Y, De B, et al. Journal of Microencapsulation,2014,31(8),805.
16 Nguyen D H, Bae J W, Choi J H, et al. Journal of Bioactive and Compa-tible Polymers,2013,28(4),341.
17 Wang H, Agarwal P, Zhao S T, et al. Biomaterials,2015,72,74.
18 Wang F,Li L,Liu B,et al. Biomedicine & Pharmacotherapy,2017,86,595.
19 Xiong X Y, Gong Y C, Li Z L, et al. Journal of Biomaterials Science, Polymer Edition,2011,22(12),1607.
20 Xiong X Y, Guo L, Gong Y C, et al. European Journal of Pharmaceutical Sciences,2012,46(5),537.
21 Wang N, Guan Y P, Yang L R, et al. Journal of Colloid Interface Science,2013,395,50.
22 Huang C, Tang Z M, Zhou Y B, et al. International Journal of Pharmaceutics,2012,429(1-2),113.
23 Dehvari K, Chen Y, Tsai Y-H, et al. Journal of Biomedical Nanotechno-logy,2016,12(9),1734.
24 Chen Y Z, Zhang W, Gu J J, et al. International Journal of Pharmaceutics,2013,452(1-2),421.
25 Wei Z, Yuan S, Chen Y Z, et al. European Journal of Pharmaceutics and Biopharmaceutics,2010,75(3),341.
26 Kim J Y, Choi W I, Kim Y H, et al. Journal of Controlled Release,2010,147(1),109.
27 Lee J H, Sahu A, Jang C, et al. Journal of Controlled Release,2015,209,219.
28 Morral-Ruíz G, Melgar-Lesmes P, López-Vicente A, et al. Nano Research,2015,8(5),1729.
29 Russo A, Pellosi D S, Pagliara V, et al. International Journal of Pharmaceutics,2016,511(1),127.
30 Ren Y, Zhang H, Chen B, et al. International Journal of Nanomedicine,2012,7,2261.
31 Singh N, Jenkins G J H, Asadi R, et al. Nano Reviews,2010,1(1),5358.
32 Chen Y, Zhang W, Huang Y, et al. International Journal of Pharmaceutics,2015,488(1-2),44.
33 Kabanov A V, Batrakova E V, Alakhov V Y. Journal of Controlled Release,2002,82(2-3),189.
34 Fox M E, Szoka F C, Frechet J M. Accounts of Chemical Research,2009,42(8),1141.
35 Nguyen D H, Joung Y K, Choi J H, et al. Biomedical Materials,2011,6(5),055004.
36 Cai X Q, Liu M R, Zhang C, et al. Colloids and Surfaces B: Biointerfa-ces,2016,142,114.
37 Li Y P, Xiao K, Luo J T, et al. Biomaterials,2011,32(27),6633.
38 Tang L Y, Wang Y C, Li Y, et al. Bioconjugate Chemistry,2009,20(6),1095.
39 Tao Y H, Han J F, Ye C T, et al. Journal of Materials Chemistry,2012,22(36),18864.
40 Zhao X J, Chen Q, Li Y S, et al. European Journal of Pharmaceutics and Biopharmaceutics,2015,93,27.
41 Choo E S G, Yu B, Xue J. Journal of Colloid and Interface Science,2011,358(2),462.
42 Fang X B, Zhang J M, Xie X, et al. International Journal of Pharmaceutics,2016,502(1-2),28.
43 Liang Y C, Su Z H, Yao Y, et al. Materials,2015,8(2),379.
44 Ma Y K, Fan X H, Li L B. Carbohydrate Polymers,2016,137,19.
[1] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[2] 韩贵华, 张宝林, 苏礼超, 黄银平, 范子梁, 赵应征. 二肉豆蔻酰磷脂酰胆碱修饰的氧化铁纳米粒子在PC-12细胞内的分布[J]. 材料导报, 2019, 33(6): 1047-1051.
[3] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[4] 赵秋丽, 卞洁鹏, 杨庆浩, 彭龙贵, 王志华, 后振中, 李颖. 聚集诱导发红光材料在生物成像领域的应用[J]. 材料导报, 2019, 33(3): 522-535.
[5] 魏波,周金堂,姚正军,钱逸,钱崑. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17): 2976-2988.
[6] 王爱国,郑毅,张祖华,刘开伟,马瑞,孙道胜. 地聚物胶凝材料改性提高混凝土耐久性的研究进展[J]. 材料导报, 2019, 33(15): 2552-2560.
[7] 冯爱玲,徐榕,王彦妮,张亚妮,林社宝. 核壳型稀土上转换纳米材料及其生物医学应用[J]. 材料导报, 2019, 33(13): 2252-2259.
[8] 肖治国,成岳,唐伟博,余宏伟. 核壳磁性纳米粒子在环境治理中的应用进展[J]. 材料导报, 2019, 33(13): 2174-2183.
[9] 韦晶, 韩希思, 张承武, 吴琼, 秦晓飞, 李林, 余昌敏, 黄维. 微小RNA纳米递送体系的构建及其研究进展[J]. 材料导报, 2019, 33(1): 16-26.
[10] 吴英柯,马建中,鲍艳. 聚合物基纳米复合材料的界面作用研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 434-442.
[11] 谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
[12] 丁昂, 张钟元, 程厅, 董星龙. 中空硅纳米球锂离子电池负极材料的制备及电化学性能[J]. 《材料导报》期刊社, 2018, 32(11): 1791-1794.
[13] 彭红,刘洋,张锦胜,郑洪立,阮榕生. 基于毛竹半纤维素的银纳米粒子的绿色合成*[J]. 材料导报编辑部, 2017, 31(22): 35-42.
[14] 陈航超, 张素红, 刘生玉, 张志强, 郭建英. N-异丙基丙烯酰胺-丙烯酸钠共聚包覆四氧化三铁温敏磁性吸水树脂的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(20): 30-34.
[15] 韩晓东, 张稳, 于坤, 贾庆明, 陕绍云, 苏红莹. 磁性水凝胶作为药物载体的应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 30-35.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed