Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 434-442    https://doi.org/10.11896/j.issn.1005-023X.2018.03.014
     材料综述 |
聚合物基纳米复合材料的界面作用研究进展
吴英柯1,马建中2,鲍艳2
1 陕西科技大学材料科学与工程学院,西安 710021
2 陕西科技大学轻工科学与工程学院,中国轻工业皮革清洁生产重点实验室,西安 710021
Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites
Yingke WU1,Jianzhong MA2,Yan BAO2
1 School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021;
2 Key Laboratory of Leather Cleaner Production, China National Light Industry, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021;
下载:  全 文 ( PDF ) ( 3023KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

将聚合物与纳米粒子复合制备性能优异的聚合物基纳米复合材料是近20年来科学界的研究热点,其中聚合物与纳米粒子间的界面作用对复合材料的性能起着关键性作用。从界面结构、力学性能、热性能及计算机仿真模拟等方面综述了聚合物基纳米复合材料的界面研究进展,并对这一领域的研究进行了展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴英柯
马建中
鲍艳
关键词:  聚合物  纳米粒子  复合材料  界面作用    
Abstract: 

Polymer matrix nanocomposites with excellent properties which are prepared from polymer and nanoparticles is a hot research topic during the past two decades, and the interfacial interaction between polymer and nanoparticles is of key importance for the properties of the composites. Based on a rich amount of literatures, the progress of interfacial interaction about polymer based nanocomposites is reviewed from the perspectives interface structure, mechanical properties, thermal properties, and computer simulation in this paper, and meanwhile, the research prospect of this field is discussed.

Key words:  polymer    nanoparticle    composite    interface interaction
               出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TB332  
基金资助: 国家重点研发计划(2017YFB0308602);国家自然科学基金(21376145);陕西省科技统筹创新工程重点实验室资助项目(2013SZS10-Z02);陕西科技大学科研创新团队资助项目(TD12-03)
作者简介:  吴英柯:女,1985年生,博士研究生,研究方向为有机/无机纳米复合材料 E-mail: einske@163.com|马建中:通信作者,男,1960年生,教授,博士研究生导师,研究方向为有机/无机纳米复合材料的制备与应用 E-mail: majz@sust.edu.cn|鲍艳:女,1981年生,教授,博士研究生导师,研究方向为有机/无机复合材料 E-mail: baoyan0611@126.com
引用本文:    
吴英柯,马建中,鲍艳. 聚合物基纳米复合材料的界面作用研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 434-442.
Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites. Materials Reports, 2018, 32(3): 434-442.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.014  或          http://www.mater-rep.com/CN/Y2018/V32/I3/434
图1  聚合物/金属复合材料的界面结构示意图:(a)聚合物/金属复合材料的界面;(b)聚合物与金属发生弱结合时,聚合物在金属表面的吸附特性;(c)聚合物与金属发生强结合时,聚合物在金属表面的吸附特性
图2  PVA/GO复合材料的拉曼光谱(激发波长为785 nm)(电子版为彩图)
图3  (a)ENR乳胶粒组装在GO片层的内外两个表面和(b)GO片层组装在ENR乳胶粒的表面的透射电镜图
图4  (a)PVA, (b)PVA/GO, (c)PVA/rGO/0.2PEI, (d)PVA/rGO/0.5PEI,(e)PVA/rGO/1.0PEI, (f)PVA/rGO/2.0PEI断面的SEM照片
Method Features Advantages Disadvantages
FTIR Reflecting chemical reaction among interfaces through band
strength changes and number of contact points (anchor number)
Studying interface
from a chemical
point of view
The interface can
not be observed
intuitively
NMR[40] Reflecting chemical reaction among interfaces through
nanoparticle’s surface grafting or adsorption on polymer chains
Raman Reflecting chemical reaction among interfaces through surface
adsorption molecules arranging orientation and structure
XPS[43] Reflecting interface combination and achieving the qualitative
analysis of surface elements (including the price) through
binding energy of electrons
Studying interface
from the photoelectron
energy
The interface can
not be observed
intuitively
SEM

TEM
Reflecting interface through roughness of
cross-section and compatibility
Reflecting interface action via microstructure of
nanoparticles and latex particles
Observing the
interface directly
The interface can not
be quantitatively
studied from a
chemical point of view
AFM

SANS

XRD
Thickness of crosslinked interface layer can be estimated
by surface roughness
Interfacial action can be studied by particle dispersibility
and interfacial phase
Interfacial action can be studied by the width and position of peaks
The thickness of the
interface layer can
be calculated
The interface can not
be observed intuitively
and quantitatively
studied from a
chemical point of view
表1  聚合物基纳米复合材料各种表征方法的比较
图5  PLA及其复合材料的动态力学分析
Method Features Advantages Disadvantages
Rheology Interface can be analyzed via viscosity, stress,
storage modulus, loss modulus and yield value
Researching interface through
rheological parameters
The interface can
not be observed
intuitively
DMA Researching interface through analysis of tanδ,
storage modulus, Tg ,etc.
Researching interface through
dynamic mechanical parameters
Static mechanics
analysis
Researching interface through tensile
modulus,etc.
Interfacial forces can be compared
表2  聚合物基纳米复合材料各种力学性能研究方法的比较
图6  PPS/SiO2纳米复合材料的DSC曲线
Method Advantages Disadvantages
DSC Studying strength of the interface action through Tg
TGA Thickness of polymer adsorbed on nanoparticles’
surface can be known
The interface can not be
observed intuitively
表3  聚合物基纳米复合材料各种热性能研究方法的比较
图7  PE(左图)及PEO(右图)聚合物链在6%功能化碳纳米管上的吸附构象(a—映射OH SWCNT,b—映射O SWCNT,c—随机混合SWCNT,d—随机OH SWCNT,e—随机O SWCNT)
图8  (a)CNTs及(b)BNNTs表面吸附聚合物链的构象
图9  芳纶和不同纳米管的相互作用能量
1 Ma J, Liu J, Bao Y , et al. Synjournal of large-scale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property[J]. Ceramics International, 2013,39(3):2803.
2 Zhang W, Ma J, Gao D , et al. Preparation of amino-functionalized graphene oxide by Hoffman rearrangement and its performances on polyacrylate coating latex[J]. Progress in Organic Coatings, 2016,94:9.
3 Merkel T C, Freeman B D, Spontak R J , et al. Sorption, transport, and structural evidence for enhanced free volume in poly(4-methyl-2-pentyne)/fumed silica nanocomposite membranes[J]. Chemistry of Materials, 2016,15(1):109.
4 Shaohui L, Jiwei Z, Jinwen W , et al. Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of suface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers[J]. ACS Applied Materials & Interfaces, 2016,6(3):1533.
5 Bodakhe S, Verma S, Garkhal K , et al. Injectable photocrosslin-kable nanocomposite based on poly(glycerol sebacate) fumarate and hydroxyapatite: Development, biocompatibility and bone regeneration in a rat calvarial bone defect model[J]. Nanomedicine, 2017,8(11):1777.
6 Subramani N K, Nagaraj S K, Shivanna S , et al. Highly flexible and visibly transparent poly(vinyl alcohol)/calcium zincate nanocompo-site films for UVA shielding applications as assessed by novel ultraviolet photon induced fluorescence quenching[J]. Macromolecules, 2016,49(7):2791.
7 Jeon H, Park S, Nam S , et al. Spin self-assembled clay nanocomposite passivation layers made from a photocrosslinkable poly(vinyl alcohol) and Na +-montmorillonite enhance the environmental stabi-lity of organic thin-film transistors [J]. Chinese Journal of Chemistry, 2016,34(11):1103.
8 Imran S M, Shao G N, Haider M S , et al. Carbon nanotube-based thermoplastic polyurethane-poly(methyl methacrylate) nanocompo-sites for pressure sensing applications[J]. Polymer Engineering & Science, 2016,56(9):1031.
9 Lizundia E, Ruiz Rubio L, Vilas J L , et al. Poly(l-lactide)/ZnO nanocomposites as efficient UV-shielding coatings for packaging applications[J]. Journal of Applied Polymer Science, 2016,133(2):42426.
10 Lei J, Tao Y, Yan L , et al. Preparation of Au-polydopamine functionalized carbon encapsulated Fe3O4 magnetic nanocomposites and their application for ultrasensitive detection of carcino-embryonic antigen[J]. Scientific Reports, 2016,6:21017.
11 Liu C, Yan H, Lv Q , et al. Enhanced tribological properties of aligned reduced graphene oxide-Fe3O4 @polyphosphazene/bismalei-mides composites[J]. Carbon, 2016,102:145.
12 Bao Y, Shi C, Ma J , et al. Double in-situ synjournal of polyacrylate/nano-TiO2 composite latex[J]. Progress in Organic Coatings, 2015,85:101.
13 Ma J, Xu Q, Zhou J , et al. Nano-scale core-shell structural casein based coating latex: Synjournal, characterization and its biodegra-dability[J]. Progress in Organic Coatings, 2013,76(10):1346.
14 Bao Y, Ma J, Li N . Synjournal and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel[J]. Carbohydrate Polymers, 2011,84(1):76.
15 Xue C H, Ma J Z . Long-lived superhydrophobic surfaces[J]. Journal of Materials Chemistry A, 2013,1(13):4146.
16 Xu Q, Fan Q, Ma J , et al. Facile synjournal of casein-based TiO2 nanocomposite for self-cleaning and high covering coatings: Insights from TiO2 dosage[J]. Progress in Organic Coatings, 2016,99:223.
17 Petrella A, Tamborra M, Curri M L , et al. Colloidal TiO2 nanocrystals/MEH-PPV nanocomposites: Photo(electro)chemical study[J]. Journal of Physical Chemistry B, 2005,109(4):1554.
18 Zhang J, Wang B J, Ju X , et al. New observations on the optical properties of PPV/TiO2 nanocomposites[J]. Polymer, 2001,42(8):3697.
19 Savenije T J, Warman J M, Goossens A . Visible light sensitisation of titanium dioxide using a phenylene vinylene polymer[J]. Chemical Physics Letters, 1998,287(1):148.
20 Salafsky J S . Exciton dissociation, charge transport, and recombination in ultrathin, conjugated polymer-TiO2 nanocrystal intermixed composites[J]. Physical Review B, 1999,59(16):293.
21 Chamis C C . Computerized multilevel analysis for multilayered fiber composites[J]. Computers & Structures, 1973,3(3):467.
22 Adams D F, Walrath D E. Iosipescu shear properties of SMC composite materials [C]∥Composite Materials: Testing and Design (6th Conference). ASTM International, 1982: 19.
23 Gent A N, Wang C . Fracture mechanics and cavitation in rubber-like solids[J]. Journal of Materials Science, 1991,26(12):3392.
24 Zhou L M, Mai Y W, Ye L . Analyses of fibre push-out test based on the fracture mechanics approach[J]. Composites Engineering, 1995,5(10-11):1199.
25 Scheutjens J M H M, Fleer G J . Statistical theory of the adsorption of interacting chain molecules. 2. Train, loop, and tail size distribution[J]. Journal of Physical Chemistry, 1980,84(2):178.
26 Gennes P G D . Polymers at an interface: A simple view[J]. Advances in Colloid & Interface Science, 1987,27(3-4):189.
27 Guiselin O . First measurement of the discontinuity jump in a reflectivity curve near total reflection edge[J]. Europhysics Letters, 1992,17:57.
28 Semenov A N, Bonet-Avalas J, Johner A , et al. Adsorption of polymer solutions onto a flat surface[J]. Macromolecules, 1996,29(6):2179.
29 Theodorou D N . Lattice models for bulk polymers at interfaces[J]. Macromolecules, 1988,21(5):1391.
30 Tannenbaum R, Zubris M, David K , et al. FTIR characterization of the reactive interface of cobalt oxide nanoparticles embedded in polymeric matrices[J]. Journal of Physical Chemistry B, 2006,110(5):2227.
31 Lou Yuanhua, Liu Meihong, Wang Xinping . Study on the interfacial structure of inorganic particles polymer nanocomposites[J].Polymer Bulletin,2009(4):38(in Chinese).
31 娄渊华, 刘梅红, 王新平 . 纳米无机粒子/聚合物复合材料界面结构的研究[J].高分子通报,2009(4):38.
32 Doganay D, Coskun S, Kaynak C , et al. Electrical, mechanical and thermal properties of aligned silver nanowire/polylactide nanocomposite films[J]. Composites Part B Engineering, 2016,99:288.
33 Goumri M, Venturini J W, Bakour A , et al. Tuning the luminescence and optical properties of graphene oxide and reduced graphene oxide functionnalized with PVA[J]. Applied Physics A, 2016,122(3):212.
34 She X, He C, Peng Z , et al. Molecular-level dispersion of graphene into epoxidized natural rubber: Morphology, interfacial interaction and mechanical reinforcement[J]. Polymer, 2014,55(26):6803.
35 Shao L, Li J, Yu G , et al. PVA/polyethyleneimine-functionalized graphene composites with optimized properties[J]. Materials & Design, 2016,99:235.
36 Li Y, Yang T, Yu T , et al. Synergistic effect of hybrid carbon nanotube-graphene oxide as a nanofiller in enhancing the mechanical pro-perties of PVA composites[J]. Journal of Materials Chemistry, 2011,21(29):10844.
37 Hwang S H, Kang D, Ruoff R S , et al. Poly(vinyl alcohol) reinforced and toughened with poly(dopamine)-treated graphene oxide, and its use for humidity sensing[J]. ACS Nano, 2014,8(7):6739.
38 Lin Y, Liu L, Xu G , et al. Interfacial interactions and segmental dynamics of poly(vinyl acetate)/silica nanocomposites[J]. Journal of Physical Chemistry C, 2015,119(23):12956.
39 Zaman I, Phan T T, Kuan H C , et al. Epoxy/graphene platelets nanocomposites with two levels of interface strength[J]. Polymer, 2011,52(7):1603.
40 Cheng Guojun, Song Ruijuan, Miao Jibin , et al. Characterization of interfacial structure of polymer nanocomposites[J]. Materials Review A:Review Papers, 2012,26(6):130(in Chinese).
40 程国君, 宋瑞娟, 苗继斌 , 等. 聚合物纳米复合材料界面结构的表征[J]. 材料导报:综述篇, 2012,26(6):130.
41 Hoshino J, Limpanart S, Khunthon S , et al. Adsorption of single-strand alkylammonium salts on bentonite, surface properties of the modified clay and polymer nanocomposites formation by a two-roll mill[J]. Materials Chemistry & Physics, 2010,123(2-3):706.
42 Wilson K S , Washburn A N R. Interphase effects in dental nanocomposites investigated by small-angle neutron scattering[J]. Journal of Biomedical Materials Research Part A, 2007,81(1):113.
43 Zhang Li, Shen Shijie . The research of fiber reinforced polymer interface[J]. Fiber Composites, 2011,28(4):30(in Chinese).
43 张莉, 申士杰 . 纤维增强树脂基复合材料界面结合机理研究现状[J]. 纤维复合材料, 2011,28(4):30.
44 Hong S, Leroueil P R, Janus E K , et al. Interaction of polycationic polymers with supported lipid bilayers and cells: Nanoscale hole formation and enhanced membrane permeability[J]. Bioconjugate Che-mistry, 2006,17(3):728.
45 Leroueil P R, Berry S A, Duthie K , et al. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers[J]. Nano Letters, 2008,8(2):420.
46 Peetla C, Labhasetwar V . Effect of molecular structure of cationic surfactants on biophysical interactions of surfactant-modified nano-particles with a model membrane and cellular uptake[J]. Langmuir, 2009,25(4):2369.
47 Jing B, Hutin M, Connor E , et al. Polyoxometalate macroion induced phase and morphology instability of lipid membrane[J]. Che-mical Science, 2013,4(10):3818.
48 van Lehn R C, Ricci M, Silva P H , et al. Lipid tail protrusions media-te the insertion of nanoparticles into model cell membranes[J]. Nature Communications, 2014,5:4482.
49 Roiter Y, Ornatska M, Rammohan A R , et al. Interaction of nano-particles with lipid membrane[J]. Nano Letters, 2008,8(3):941.
50 Xiao X, Monta?o G A, Edwards T L , et al. Surface charge depen-dent nanoparticle disruption and deposition of lipid bilayer assemblies[J]. Langmuir, 2012,28(50):17396.
51 Dong H, Ye P, Zhong M , et al. Superhydrophilic surfaces via polymer-SiO2 nanocomposites[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2010,26(19):15567.
52 Wu L, Jiang X . Recent developments in methodology employed to study the interactions between nanomaterials and model lipid membranes[J]. Analytical and Bioanalytical Chemistry, 2016,408(11):1.
53 Zhang L, Luo M, Sun S , et al. Effect of surface structure of nano-CaCO3 particles on mechanical and rheological properties of PVC composites[J]. Journal of Macromolecular Science Part B, 2010,49(5):970.
54 Ashida M, Noguchi T, Mashimo S . Dynamic moduli for short fiber-CR composites[J]. Journal of Applied Polymer Science, 1984,29(2):661.
55 Richard A, Vaia A, Giannelis E P . Polymer melt intercalation in organically-modified layered silicates: Model predictions and experiment[J]. Macromolecules, 1997,30(25):8000.
56 Pukánszky B, Fekete E . Adhesion and surface modification[J]. 1999,139:109.
57 Diao H, Si Y, Zhu A , et al. Surface modified nano-hydroxyapatite/poly(lactide acid) composite and its osteocyte compatibility[J]. Materials Science & Engineering C, 2012,32(7):1796.
58 Jiang C, He H, Jiang H , et al. Nano-lignin filled natural rubber composites: Preparation and characterization[J]. Express Polymer Letters, 2013,7(5):480.
59 Zhang S, Guo M, Chen Z , et al. Grafting photosensitive polyurethane onto colloidal silica for use in UV-curing polyurethane nanocomposites[J]. Colloids & Surfaces A Physicochemical & Enginee-ring Aspects, 2014,443(4):525.
60 Hosseini S M, Torbati-Fard N, Kiyani H , et al. Comparative role of interface in reinforcing mechanisms of nano silica modified by silanes and liquid rubber in SBR composites[J]. Journal of Polymer Research, 2016,23(9):203.
61 Zhan Y, Fan Y, Pan Y , et al. Construction of advanced poly(arylene ether nitrile)/multi-walled carbon nanotubes nanocompo-sites by controlling the precise interface[J]. Journal of Materials Science, 2016,51(4):2090.
62 Yang J, Xu T, Lu A , et al. Preparation and properties of poly (p-phenylene sulfide)/multiwall carbon nanotube composites obtained by melt compounding[J]. Composites Science & Technology, 2009,69(2):147.
63 Wrobel D, Ionov M, Gardikis K , et al. Interactions of phosphorus-containing dendrimers with liposomes[J]. Biochimica Et Biophysica Acta, 2011,1811(3):221.
64 Gardikis K, Hatziantoniou S, Viras K , et al. A DSC and raman spectroscopy study on the effect of PAMAM dendrimer on DPPC model lipid membranes[J]. International Journal of Pharmaceutics, 2006,318(1-2):118.
65 Yang Y, Yu W, Duan H , et al. Realization of reinforcing and toug-hening poly (phenylene sulfide) with rigid silica nanoparticles[J]. Journal of Polymer Research, 2016,23(9):188.
66 García-Chávez K I, Hernández-Escobar C A, Flores-Gallardo S G , et al. Morphology and thermal properties of clay/PMMA nanocomposites obtained by miniemulsion polymerization[J]. Micron, 2013,49(6):21.
67 Kim D, Lee Y, Seo J , et al. Preparation and properties of poly(urethane acrylate) (PUA) and tetrapod ZnO whisker (TZnO-W) composite films[J]. Polymer International, 2013,62(2):257.
68 Ciprari D, Karl Jacob A, Rina Tannenbaum . Characterization of polymer nanocomposite interphase and its impact on mechanical properties[J]. Macromolecules, 2006,39(19):6565.
69 Huang H, Chen L, Varshney V , et al. Investigation of phonon transport and thermal boundary conductance at the interface of functionalized SWCNT and poly (ether-ketone)[J]. Journal of Applied Physics, 2016,120(9):95102.
70 Ansari R, Rouhi S, Ajori S . On the interfacial properties of polymers/functionalized single-walled carbon nanotubes[J]. Brazilian Journal of Physics, 2016,46(3):361.
71 Rouhi S . Molecular dynamics simulation of the adsorption of polymer chains on CNTs, BNNTs and GaNNTs[J]. Fibers and Polymers, 2016,17(3):333.
72 Asadinezhad A, Kelich P . Effects of carbon nanofiller characteristics on PTT chain conformation and dynamics: A computational study[J]. Applied Surface Science, 2017,392:981.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[5] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[6] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[7] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[8] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[9] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[10] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[11] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[12] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[13] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[14] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[15] 刘国军, 张生义, 钟明月, 张桂霞, 王艳, 余大平. BEM含量对MAA-EA-MMA共聚物乳液的pH响应性研究[J]. 材料导报, 2019, 33(8): 1422-1426.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed