Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1344-1351    https://doi.org/10.11896/j.issn.1005-023X.2018.08.026
  材料研究 |
阻燃型玻纤增强尼龙10T复合材料的热氧老化行为及热降解动力学
王蒙, 宋海硕, 郭建兵
贵州大学材料与冶金学院,贵阳 550025
Thermo-oxidative Aging and Thermal Degradation Kinetics of the Flame Retardant Glass Fiber Reinforced Nylon 10T Composites
WANG Meng, SONG Haishuo, GUO Jianbing
College of Materials and Metallurgy, Guizhou University, Guiyang 550025
下载:  全 文 ( PDF ) ( 2317KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了不同热氧老化温度(160 ℃、200 ℃和 240 ℃)和时间(0~50 d)对溴化环氧树脂/Sb2O3协效阻燃短玻纤增强尼龙10T复合材料(PA10T/GF/FR)的热氧老化行为以及热降解动力学的影响。采用力学性能测试、SEM、DMA和TGA分析对老化前后复合材料的动静态力学、微观形貌以及热降解行为进行研究,并使用Kissinger和Flynn-Wall-Ozawa两种方法计算了复合材料的热降解活化能。结果表明:老化过程中基体树脂降解分子量降低,纤维与基体界面性能恶化,复合材料力学性能下降;160 ℃老化过程部分PA10T分子链发生交联反应,储能模量和玻璃化转变温度(Tg)增加,200 ℃和 240 ℃下Tg先上升后下降,老化后期树脂分子链以降解为主;活化能计算表明160 ℃老化50 d后复合材料热稳定性提升,200 ℃老化50 d以及240 ℃老化30 d后,复合材料结构破坏严重,热降解行为变化显著。此外,阻燃剂的添加能够提升老化试样的热稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王蒙
宋海硕
郭建兵
关键词:  热氧老化  PA10T  热降解  性能    
Abstract: In this paper, the thermal-oxidative aging effects on the thermal oxidation behaviors and thermal degradation kine-tics of flame retardant short-glass-fiber reinforced PA10T composites (PA10T/GF/FR) were investigated with different aging temperatures of 160 ℃, 200 ℃ and 240 ℃ for 0—50 days. The static and dynamic mechanical properties, microstructure and thermal degradation behaviors were investigated by using mechanical properties analysis, DMA, SEM and TGA,respectively. Kissinger and Flynn-Wall-Ozawa methods were utilized to calculate the thermal degradation activation energy of PA10T/GF/FR.The results de-monstrated that during thermal-oxidative aging the molecular weight of PA10T resin declined and the interfacial properties between fiber and matrix deteriorated, resulting in the decrease of mechanical properties. The micro-crosslinking reaction happened during 160 ℃ aging process and thus storage modulus increased as well as glass transition temperature (Tg). However, the molecular degradation dominated in the later phase of 200 ℃ and 240 ℃ aging,which resulted in the Tg increase first and decrease after. The calculation of activation energy exhibited that the thermal stability of the 50 d aged sample at 160 ℃ was improved, while after 50 d aging at 200 ℃ or 30 d at 240 ℃, the composite structure was destroyed seriously, and the thermal degradation behaviors changed significantly. What’s more, the flame retardant can enhance the thermal stability of aged samples.
Key words:  thermo-oxidative aging    PA10T    thermal degradation    property
               出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TQ323.6  
基金资助: 国家自然科学基金(51003088;51602067);贵州省优秀青年科技人才培养对象专项资金(黔科合人字[2015]26号);贵州省高层次创新型人才培养项目(黔科合人才[2015]4039;黔科合人才[2016]5667号)
通讯作者:  郭建兵:通信作者,男,1979年生,研究员,主要从事聚合物结构与性能研究 E-mail:guojianbing_1015@126.com   
作者简介:  王蒙:男,1991年生,硕士研究生,主要从事复合材料的高性能化研究 E-mail:wm910625@163.com
引用本文:    
王蒙, 宋海硕, 郭建兵. 阻燃型玻纤增强尼龙10T复合材料的热氧老化行为及热降解动力学[J]. 《材料导报》期刊社, 2018, 32(8): 1344-1351.
WANG Meng, SONG Haishuo, GUO Jianbing. Thermo-oxidative Aging and Thermal Degradation Kinetics of the Flame Retardant Glass Fiber Reinforced Nylon 10T Composites. Materials Reports, 2018, 32(8): 1344-1351.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.026  或          http://www.mater-rep.com/CN/Y2018/V32/I8/1344
1 Novitsky T F, Lange C A, Mathias L J, et al. Eutectic melting behavior of polyamide 10,T-co-6,T and 12,T-co-6,T copolyterephthalamides[J].Polymer,2010,51:2417.
2 Zhang C, Huang X, Zeng X, et al. Fluidity improvement of semia-romatic polyamides: Modification with oligomers[J].Journal of Applied Polymer Science,2014,131:5621.
3 Braga R A, Jr M P. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites[J].Materials Science & Engineering C Materials for Biological Applications,2015,56:269.
4 Park C S, Lee K J, Nam J D, et al. Crystallization kinetics of glass fiber reinforced PBT composites[J].Journal of Applied Polymer Science,2015,78:576.
5 Cerrada M L, Benavente R, Pérez E. Effect of short glass fiber on structure and mechanical behavior of an ethylene-1-octene copolymer[J].Macromolecular Chemistry & Physics,2015,202:2686.
6 Fu S Y, Lauke B, Mäder E, et al. Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites[J].Composites Part A Applied Science & Manufacturing,2000,31:1117.
7 Laun H M. Orientation effects and rheology of short glass fiber-reinforced thermoplastics[J].Colloid and Polymer Science,1984,262:257.
8 Yang W, Song L, Hu Y, et al. Enhancement of fire retardancy performance of glass-fibre reinforced poly(ethylene terephthalate) composites with the incorporation of aluminum hypophosphite and melamine cyanurate[J].Composites Part B Engineering,2011,42:1057.
9 Liu Y, Deng C L, Zhao J, et al. An efficiently halogen-free flame-retardant long-glass-fiber-reinforced polypropylene system[J].Polymer Degradation & Stability,2011,96:363.
10 Poisson N, Maazouz A, Sautereau H, et al. Curing of dicyandiamide epoxy resins accelerated with substituted ureas[J].Journal of Applied Polymer Science,1998,69:2487.
11 Vahabi H, Sonnier R, Ferry L. Effects of ageing on the fire beha-viour of flame-retarded polymers: A review[J].Polymer Internatio-nal,2015,64:313.
12 Richaud E, Colin X, Monchy-Leroy C, et al. Polyethylene stabilization against thermal oxidation by a trimethylquinoleine oligomer[J].Polymer Degradation & Stability,2009,94:410.
13 Acevedo M E, Quijada R, Vallette M C. Thermal oxidation of me-tallocene ethylene-1-olefin copolymer films during one year oven aging[J].Polymer Degradation & Stability,2008,93:1947.
14 Okamba-Diogo O, Richaud E, Verdu J, et al. Molecular and macromolecular structure changes in polyamide 11 during thermal oxidation-Kinetic modeling[J].Polymer Degradation & Stability,2015,120:76.
15 Zuo X, Zhang K, Lei Y, et al. Influence of thermooxidative aging on the static and dynamic mechanical properties of long-glass-fiber-reinforced polyamide 6 composites[J].Journal of Applied Polymer Science,2014,131:1023.
16 Song H, Zhou D, Guo J. Thermal-oxidative aging effects on the properties of long glass fiber reinforced polyamide 10T composites[J].Polymer Composites,DOI:10.1002/pc.24174.
17 Zuo X L,Shao H J,Wu B,et al.Effects of thermal-oxidative aging on the static and dynamic mechanical properties and thermal degradation kinetic of flame retardant long-glass-fiber reinforced nylon 6 composites[J].Polymer Materials Science & Engineering,2014,30(6):54(in Chinese).
左晓玲,邵会菊,吴斌,等.热氧老化对阻燃型长玻纤增强尼龙6静动态力学及降解动力学的影响[J].高分子材料科学与工程,2014,30(6):54.
18 Shu Y, Ye L, Yang T. Study on the long-term thermal-oxidative aging behavior of polyamide 6[J].Journal of Applied Polymer Science,2010,110:945.
19 Zhang D, He M, Qin S, et al. Rheology characterization, dynamic mechanical, thermal, and mechanical properties of LGF/TPU/PBT/PTW composites[J].Polymer Composites,2016,DOI:10.1002/pc.24001.20 Tao Z, Wang Y, Li J, et al. Fabrication of long glass fiber reinforced polyacetal composites: Mechanical performance, microstructures, and isothermal crystallization kinetics[J].Polymer Composites,2014,36:1826.
21 Zuo X, Shao H, Zhang D, et al. Effects of thermal-oxidative aging on the flammability and thermal-oxidative degradation kinetics of tris(tribromophenyl) cyanurate flame retardant PA6/LGF compo-sites[J].Polymer Degradation & Stability,2013,98:2774.
22 Kissinger H E. Reaction kinetics in differential thermal analysis[J].Analytical Chemistry,1957,29:1702.
23 Flynn J H, Wall L A. A quick, direct method for the determination of activation energy from thermogravimetric data[J].Journal of Polymer Science Part B Polymer Letters,1966,4:323.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[3] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[4] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[5] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[6] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[7] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[8] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[9] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[10] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[11] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[12] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[13] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[14] 李今朝, 陈亮, 黄腾飞, 匡艳军, 邱振生. 关于反应堆压力容器新型用钢SA-508Gr.4N的研究进展[J]. 材料导报, 2019, 33(z1): 382-385.
[15] 王怡心, 马勤, 贾建刚, 高昌琦, 张瑄瑄. Half-Heusler热电材料性能优化策略及研究进展[J]. 材料导报, 2019, 33(z1): 403-407.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed