Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (13): 113-119    https://doi.org/10.11896/j.issn.1005-023X.2017.013.014
  材料综述 |
混凝土无机表面处理技术研究进展
史才军, 汪越, 潘晓颖, 张健
湖南大学土木工程学院,长沙 410082
Advances in Inorganic Surface Treatment of Concrete
SHI Caijun, WANG Yue, PAN Xiaoying, ZHANG Jian
College of Civil Engineering, Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 1572KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土表面处理能够显著改善混凝土表面渗透性,与有机表面处理相比,无机表面处理既能提升混凝土的耐久性,又具有较强的抗老化性能,发展前景比有机表面处理更广阔。对不同无机表面处理研究工作进行了总结对比,分析了无机表面处理的作用机理及其对混凝土耐久性的影响,以期为无机表面处理技术的进一步研究和其在工程中的应用提供指导和帮助。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史才军
汪越
潘晓颖
张健
关键词:  无机表面处理方法  抗老化  作用机理  耐久性    
Abstract: Surface treatment could significantly improve the permeability of concrete surface. Compared with organic surface treatment agent, inorganic surface treatment agent could not only improve the durability of concrete but also ameliorate aging resis-tance. This paper compared different inorganic surface treatment technologies and analyzed the influences on permeability and the mechanism of inorganic surface treatment. Finally, suggestions are proposed for the further study and application of inorganic surface treatment technology.
Key words:  inorganic surface treatment    aging resistance    function mechanism    durability
               出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TQ172  
作者简介:  史才军:男,1963年生,博士,教授,主要从事土木工程材料方面的研究 E-mail:cshi@hnu.edu.cn
引用本文:    
史才军, 汪越, 潘晓颖, 张健. 混凝土无机表面处理技术研究进展[J]. 《材料导报》期刊社, 2017, 31(13): 113-119.
SHI Caijun, WANG Yue, PAN Xiaoying, ZHANG Jian. Advances in Inorganic Surface Treatment of Concrete. Materials Reports, 2017, 31(13): 113-119.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.014  或          http://www.mater-rep.com/CN/Y2017/V31/I13/113
1 Aguiar J B. Coatings for concrete protection against aggressive environments[J]. J Adv Concr Technol, 2008,6(1):243.
2 Moradllo M K, Shekarchi M, Hoseini M. Time-dependent perfor-mance of concrete surface coatings in tidal zone of marine environment[J]. Construction Building Mater,2012,30(5):198.
3 Yu Hongfa, Sun Wei. Diffusion equations of chloride ion in concrete under the combined action of durability factors[J]. J Building Mater,2002,5(3):240(in Chinese).
余红发, 孙伟. 混凝土在多重因素作用下的氯离子扩散方程[J]. 建筑材料学报,2002,5(3):240.
4 Mehta P K. Concrete technology at the crossroads--problems and opportunities[J]. ACI Special Publication, 1994,144:1.
5 Baltazar L, Santana J, Lopes B, et al. Surface skin protection of concrete with silicate-based impregnations: Influence of the substrate roughness and moisture[J]. Construction Building Mater,2014,70(3):191.
6 Ibrahim M, Al-Gahtani A S, Maslehuddin M, et al. Effectiveness of concrete surface treatmentmaterials in reducing chloride-induced reinforcement corrosion[J]. Construction Building Mater,1997,11:443.
7 Baltazar, Rodrigues L, Correia M P, et al. Hydrophobic protection for concrete: Short-term performance and durability[J]. Restoration Buildings Monuments,2016,19(4):267.
8 Zhu Y G, Kou S C, Poon C S, et al. Influence of silane-based water repellent on the durability properties of recycled aggregate concrete[J]. Cem Concr Compos,2013,35(1):32.
9 Pigino B, Leemann A, Franzoni E, et al. Ethyl silicate for surface treatment of concrete—PartⅡ: Characteristics and performance[J]. Cem Concr Compos,2012,34(3):313.
10 Levi M, Ferro C, Regazzoli D, et al. Comparative evaluation method of polymer surface treatments applied on high performance concrete[J]. J Mater Sci,2002,37(22):4881.
11 Jones M R, Dhir R K, Gill J P. Concrete surface treatment: Effect of exposure temperature on chloride diffusion resistance[J]. Cem Concr Res,1995,25(1):197.
12 Buenfeld N R, Zhang J Z. Chloride diffusion through surface-treated mortar specimens—Corrosion and corrosion protection of steel in concrete[J]. Cem Concr Res,1998,28(28):665.
13 Almusallam A A, Khan F M, Dulaijan S U, et al. Effectiveness of surface coatings in improving concrete durability[J]. Cem Concr Compos,2003,25(25):473.
14 Batis G, Pantazopoulou P, Routoulas A. Corrosion protection investigation of reinforcement by inorganic coating in the presence of alkanolamine-based inhibitor[J]. Cem Concr Compos,2003,25(3):371.
15 Franzoni E, Varum H, Natali M E, et al. Improvement of historic reinforced concrete/mortars by impregnation and electrochemical methods[J]. Cem Concr Compos,2014,49(5):50.
16 Mcgettigan E. Silicon-based weatherproofing materials[J]. Concr Int,1992,14:52.
17 Thompson L R, Silsbee M R, Gill P M, et al. Characterization of silicate sealers on concrete[J]. Cem Concr Res,1997,27(10):1561.
18 Brenna A, Bolzoni F, Beretta S, et al. Long-term chloride-induced corrosion monitoring of reinforced concrete coated with commercial polymer-modified mortar and polymeric coatings[J]. Construction Building Mater,2013,48(48):734.
19 Cardenas H E, Struble L J. Electrokinetic nanoparticle treatment of hardened cement paste for reduction of permeability[J]. J Mater Civil Eng,2006,18(4):554.
20 Jiang L, Xue X, Zhang W, et al. The investigation of factors affec-ting the water impermeability of inorganic sodium silicate-based concrete sealers[J]. Construction Building Mater,2015,93:729.
21 Chourasia A. Protection of bio-deteriorated reinforced concrete using concrete sealers[J]. Int J Mater Chem Phys,2015,1(1):11.
22 Li G, Yang B, Guo C, et al. Time dependence and service life prediction of chloride resistance of concrete coatings[J]. Construction Building Mater,2015,83:19.
23 Setyowatia E, Amalia S F, Nazriati, et al. Hydrophobic silica coa-ting based on waterglass on copper by electrophoretic deposition[J]. Appl Mech Mater,2014,493:749.
24 Owusua Y A. Physical-chemistry study of sodium silicate as a foundry sand binder[J]. Adv Colloid Interface Sci,1982,18(1):57.
25 Xue X, Yang J, Zhang W, et al. The study of an energy efficient cool white roof coating based on styrene acrylate copolymer and cement for waterproofing purpose—Part Ⅱ: Mechanical and water impermeability properties[J]. Construction Building Mater,2015,96:666.
26 Song Z, Xue X, Li Y, et al. Experimental exploration of the waterproofing mechanism of inorganic sodium silicate-based concrete sea-lers[J]. Construction Building Mater,2016,104:276.
27 Chen Xiuqin, Yang Shaoming. Preparation of sodium silicate composite coating with high water tolerance[J]. J Huaqiao University: Nat Sci,2000,21(3):271(in Chinese).
陈秀琴, 杨少明. 耐水性水玻璃复合涂料的研制[J]. 华侨大学学报:自然科学版,2000,21(3):271.
28 Yang Jie. Study of solid phase preparation of high degree of polyme-rization of condensed aluminum phosphate and its application in so-dium silicate cement[D]. Nanning: Guangxi University,2012 (in Chinese).
杨杰. 固相法制备高聚合度缩合磷酸铝及其在水玻璃胶泥中的应用研究[D]. 南宁:广西大学, 2012.
29 Wang Yafeng. Sodium silicate inorganic coatings development and development trend[J]. Public Communication Sci Technol,2011(7):114(in Chinese).
王亚峰. 水玻璃无机涂料的研制及发展趋势[J]. 科技传播, 2011(7):114.
30 Zellmann H D, Kaps C. Chemically modified water-glass binders for acid-resistant mortars[J]. J Am Ceram Soc,2006,89(4):1369.
31 Pan X, Shi Z, Shi C, et al. Interactions between inorganic surface treatment agents and matrix of Portland cement-based materials[J]. Construction Building Mater,2016,113:721.
32 Keck R H. Improving concrete durability with cementitious materials[J]. Concr Int,2001,23(9):47.
33 Sprouts S, Huang L, Amey S L. Evaluating the performance of cementitious waterproofing systems for concrete[J]. Concr Int, 1994,16:1.
34 Bao Wang, Han Dongdong, et al. The analysis and research status on mechanism of cementitious capillary crystalline waterproofing coating[J]. New Building Mater, 2011,38(9):79(in Chinese).
鲍旺, 韩冬冬,等. 水泥基渗透结晶型防水涂料作用机理研究进展和分析[J]. 新型建筑材料, 2011,38(9):79.
35 Kagi D A, Ren K B. Reduction of water absorption in silicate treated concrete by post-treatment with cationic surfactants[J]. Building Environment,1995,30(2):237.
36 Jia L, Shi C, Pan X, et al. Effects of inorganic surface treatment on water permeability of cement-based materials[J]. Cem Concr Compos,2016,67(3):85.
37 Hou P, et al. Effects and mechanisms of surface treatment of har-dened cement-based materials with colloidal nanoSiO2 and its precursor[J]. Construction Building Mater,2014,53(53):66.
38 Diamanti M V, Brenna A, Bolzoni F, et al. Effect of polymer modified cementitious coatings on water and chloride permeability in concrete[J]. Construction Building Mater,2013,49(6):720.
39 Woo R S C, Zhu H, Chow M M K, et al. Barrier performance of silane-clay nanocomposite coatings on concrete structure[J]. Compos Sci Technol,2008,68(14):2828.
40 Dai J G, Akira Y, Wittmann F H, et al. Water repellent surface impregnation for extension of service life of reinforced concrete structures in marine environments: The role of cracks[J]. Cem Concr Compos, 2010,32(2):101.
41 Ibrahim M, Al-Gahtani A S, Maslehuddin M, et al. Use of surface treatment materials to improve concrete durability[J]. J Mater Civil Eng,1999,11(1):36.
42 Franzoni E, Pigino B, Pistolesi C. Ethyl silicate for surface protection of concrete: Performance in comparison with other inorganic surface treatments[J]. Cem Concr Compos,2013,44(11):69.
43 Pan X, Shi C, Jia L, et al. Effect of inorganic surface treatment on air permeability of cement-based materials[J]. J Mater Civil Eng,2015,28(3):401.
44 Cˇalogovic' V. Gas permeability measurement of porous materials (concrete) by time-variable pressure difference method[J]. Cem Concr Res,1995,25(5):1054.
45 Yang K, Basheer P A M, Magee B, et al. Investigation of moisture condition and Autoclam sensitivity on air permeability measurements for both normal concrete and high performance concrete[J]. Construction Building Mater,2013,48(48):306.
46 Yang K, Basheer P A M, Bai Y, et al. Development of a new in situ test method to measure the air permeability of high performance concretes[J]. Ndt E Int,2014,64(2):30.
47 Preez A A D, Alexander M G. A site study of durability indexes for concrete in marine conditions[J]. Mater Structures, 2004,37(3):146.
48 Kucharczyková B, Misák P, Vymazal T. Determination and evaluation of the air permeability coefficient using torrent permeability tes-ter[J]. Russian J Nondestructive Testing,2010,46(3):226.
49 Aguiar J B, Júnior C. Carbonation of surface protected concrete[J]. Construction Building Mater, 2013,49(4):478.
50 Shi H S, Xu B W, Zhou X C. Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete[J]. Construction Building Mater,2009,23(5):1980.
51 Jiang Qian, Mu Song, Liu Jianzhong, et al. Research on factors affecting penetration depth of modified water glass coatings[J]. Paint Coat Ind,2015,45(8):67(in Chinese).
姜骞, 穆松, 刘建忠, 等. 水玻璃涂料渗透深度的影响因素研究[J]. 涂料工业,2015,45(8):67.
52 Han Y M, Dong G S, Choi D S. Evaluation of the durability of mortar and concrete applied with inorganic coating material and surface treatment system[J]. Construction Building Mater,2007,21(2):362.
53 Weng Zailong, Zhuo Shiwei, Yang Zhongjia. Effects of surface penetration sealer on concrete characteristics[J]. Corrosion Eng,2002,26(3):181(in Chinese).
翁在龙, 卓世伟, 扬仲家. 表面渗透涂封剂对混凝土特性影响之研究[J]. 防蚀工程,2002,26(3):181.
54 Zhang Rui. The effects of nano-SiO2 and its precursor on the performance of cement-based materials and the study on the mechanism[D]. Jinan: Jinan University,2016(in Chinese).
张蕊. 纳米SiO2及其前驱体对表层水泥基材料性能影响及作用机理研究[D]. 济南:济南大学,2016.
55 Huang Bo, Deng Dehua, Chen Huiyu. Effect of deep penetration sealer (DPS) on concrete resistance to sulfate attack[J]. J Central South University:Sci Technol,2011,42(12):3858(in Chinese).
黄波, 邓德华, 陈蕙玉. 深度渗透密封剂(DPS)对混凝土抗硫酸盐侵蚀性能的影响[J]. 中南大学学报:自然科学版,2011, 42(12):3858.
[1] 兰明章, 聂松, 王剑锋, 张巧伟, 陈智丰. 古建筑修复用石灰基砂浆的研究进展[J]. 材料导报, 2019, 33(9): 1512-1516.
[2] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[3] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[4] 王爱国,郑毅,张祖华,刘开伟,马瑞,孙道胜. 地聚物胶凝材料改性提高混凝土耐久性的研究进展[J]. 材料导报, 2019, 33(15): 2552-2560.
[5] 曹琛, 郑山锁, 胡卫兵. 酸雨环境下混凝土结构性能研究综述[J]. 材料导报, 2019, 33(11): 1869-1874.
[6] 王爱国,吕邦成,刘开伟,马 雪,徐海燕,谭京梅. 珊瑚骨料混凝土性能及微结构的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1528-1533.
[7] 张大旺,王栋民. 地质聚合物混凝土研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1519-1527.
[8] 董方园,郑山锁,宋明辰,张艺欣,郑捷,秦卿. 高性能混凝土研究进展Ⅱ:耐久性能及寿命预测模型[J]. 《材料导报》期刊社, 2018, 32(3): 496-502.
[9] 徐晶, 王先志. 浸渍及固载法用于混凝土微生物表面处理对比研究[J]. 材料导报, 2018, 32(24): 4276-4280.
[10] 高瑞军, 姚燕, 吴浩, 王玲. 纳米复合粉体分散剂的制备及其分散性能[J]. 材料导报, 2018, 32(22): 3868-3874.
[11] 张洁, 张建建, 孙国文, 杨建明, 汤青青. 三种固废微粉对磷酸钾镁水泥浆体早期性能影响及作用机理[J]. 材料导报, 2018, 32(20): 3553-3561.
[12] 苏丽, 牛荻涛, 罗大明. 珊瑚骨料混凝土力学性能及耐久性能研究[J]. 材料导报, 2018, 32(19): 3387-3393.
[13] 翟梦怡, 赵计辉, 王栋民. 锂渣粉作为辅助胶凝材料在水泥基材料中的研究进展*[J]. CLDB, 2017, 31(5): 139-144.
[14] 杨医博, 杨凯越, 吴志浩, 林少群, 丘广宏, 燕哲, 彭章锋, 林燕姿, 郭文瑛, 王恒昌. 配筋超高性能混凝土用作免拆模板对短柱力学性能影响的实验研究*[J]. CLDB, 2017, 31(23): 120-124.
[15] 杜丰音, 金祖权, 于泳. 超高强水泥基材料的力学及耐久性能*[J]. CLDB, 2017, 31(23): 44-51.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed