Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4276-4280    https://doi.org/10.11896/j.issn.1005-023X.2018.24.012
  无机非金属及其复合材料 |
浸渍及固载法用于混凝土微生物表面处理对比研究
徐晶, 王先志
同济大学先进土木工程材料教育部重点实验室,上海 201804
A Comparison Investigation on the Immersion and Immobilization Methods Applied in the Microbial Surface Treatment for Concrete
XU Jing, WANG Xianzhi
Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Tongji University, Shanghai 201804
下载:  全 文 ( PDF ) ( 1464KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微生物诱导碳酸钙沉积目前已广泛用于各种多孔介质的表面处理,以提高其耐久性和使用寿命。选用了脲解型微生物,分别采用液体浸渍和琼脂固载两种方式对混凝土表面进行处理。沉积一周后,测试混凝土的毛细吸水系数、水渗透系数和氯离子电通量,以及表面接触角和沉积厚度,并综合利用扫描电镜、能谱仪以及X射线衍射仪分析了沉积产物的微观形貌和组成。结果发现,微生物沉积产物膜层厚度约为10 μm。与液体浸渍方式相比,琼脂固载所获得的沉积产物尽管较薄且表面呈亲水性,但固载可为微生物的生长提供良好的微环境,有利于形成致密的碳酸钙层,因此琼脂固载能更有效地提高混凝土的抗渗性,可使水渗透系数降低80%以上。同时,固载方式显然更具备实用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐晶
王先志
关键词:  混凝土  微生物  表面处理  耐久性    
Abstract: Microbially-induced calcium carbonate precipitation has been widely used for the surface treatment of all sorts of porous media, for the purpose of improving the durability and extending the service life. By using ureolytic type microorganism, two methods including liquid immersion and agar immobilization were employed for the surface treatment of concrete. After treatment for one week, the capillary water absorption coefficient, water permeation coefficient, and rapid chloride permeation (RCP) of concrete were tested. The contact angle of the surfaces and the thickness of the precipitates were measured. The morphology and composition of the precipitates were comprehensively studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analyses. Results revealed that the thickness of the microbial precipitated coating layer was about 10 μm. Although the layer precipitated by agar immobilization showed hydrophilicity and was thinner than that by liquid immersion, much denser layer of calcium carbonate was obtained by immobilization method since agar provided favorable microenvironment for the growth of bacteria. Thus, the resistance to permeability of concrete can be effectively enhanced, in particular, the water permeation coefficient was decreased more than 80% by immobilization technique. Meanwhile, agar immobilization has significant values in practical application.
Key words:  concrete    microorganism    surface treatment    durability
                    发布日期:  2019-01-23
ZTFLH:  Q331  
基金资助: 国家自然科学基金(51378011);国家重点研发计划项目(2016YFC0700802)
作者简介:  徐晶:男,1984年生,博士,副研究员,主要研究方向为水泥基材料和微生物自修复材料 E-mail:nanonewman@126.com
引用本文:    
徐晶, 王先志. 浸渍及固载法用于混凝土微生物表面处理对比研究[J]. 材料导报, 2018, 32(24): 4276-4280.
XU Jing, WANG Xianzhi. A Comparison Investigation on the Immersion and Immobilization Methods Applied in the Microbial Surface Treatment for Concrete. Materials Reports, 2018, 32(24): 4276-4280.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.012  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4276
1 Boquet E, Boronat A, Ramos-Cormenzana A. Production of calcite (calcium carbonate) crystals by soil bacteria is a common phenomenon[J].Nature,1973,246:527.
2 Gollapudi U K, Knutson C L, Bang S S, et al. A new method for controlling leaching through permeable channels[J].Chemosphere,1995,30(4):695.
3 Xu J. Research progress of concrete crack remediation based on microbially mineral precipitation[J].Journal of Zhejiang University (Engineering Science),2012,46(11):2020(in Chinese).
徐晶.基于微生物矿化沉积的混凝土裂缝修复研究进展[J].浙江大学学报(工学版),2012,46(11):2020.
4 Achal V, Mukherjee A. A review of microbial precipitation for sustainable construction[J].Construction and Building Materials,2015,93:1224.
5 De Muynck W, De Belie N, Verstraete W. Microbial carbonate precipitation in construction materials: A review[J].Ecological Engineering,2010,36(2):118.
6 Wang J Y, Ersan Y C, Boon N, et al. Application of microorganisms in concrete: A promising sustainable strategy to improve concrete durability[J].Applied Microbiology and Biotechnology,2016,100(7):2993.
7 Qian C, Wang J, Wang R, et al. Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii[J].Materials Science and Engineering:C,2009,29(4):1273.
8 De Muynck W, Cox K, De Belie N, et al. Bacterial carbonate preci-pitation as an alternative surface treatment for concrete[J].Construction and Building Materials,2008,22(10):875.
9 De Muynck W, Debrouwer D, De Belie N, et al. Bacterial carbonate precipitation improves the durability of cementitious materials[J].Cement and Concrete Research,2008,38(7):1005.
10 Nosouhian F, Mostofinejad D, Hasheminejad H. Influence of biodeposition treatment on concrete durability in a sulphate environment[J].Biosystems Engineering,2015,133:141.
11 Xu J, Yao W, Jiang Z W. Non-ureolytic bacterial carbonate precipitation as a surface treatment strategy on cementitious materials[J].Journal of Materials in Civil Engineering,2014,26(5):983.
12 Wang R X, Qian C X, Wang J Y. Bio-deposition of a calcite layer on cement-based materials by brushing with agar-immobilised bacteria[J].Advances in Cement Research,2011,23(4):185.
13 Wang J, Qian C, Wang R, et al.Surface protection of cement based materials by a CaCO3 layer produced by alginate-immobilized bacteria[J].Jounal of Functional Materials,2009,40(2):348(in Chinese).
王剑云,钱春香,王瑞兴,等.海藻酸钠固载菌株在水泥基材料表面防护中的应用研究[J].功能材料,2009,40(2):348.
14 Wang R, Qian C. Restoration of defects on cement-based materials suface by bacteria immobilized in agar[J].Journal of Building Mate-rials,2013,16(6):942(in Chinese).
王瑞兴,钱春香.琼脂固载微生物矿化修复水泥基材料表面缺陷[J].建筑材料学报,2013,16(6):942.
15 Wang R, Qian C, Wang J, et al. Different targeted methods of microbiologically deposited CaCO3 layer on hardened cement paste surface[J].Journal of the Chinese Ceramic Society,2008,36(10):1378(in Chinese).
王瑞兴,钱春香,王剑云,等.水泥石表面微生物沉积碳酸钙覆膜的不同工艺[J].硅酸盐学报,2008,36(10):1378.
16 Zhu F, Li G, Du H, et al. A new surface-modified technology of cement mortar using calcium carbonate biodeposition[J].Jounal of Functional Materials,2013,44(5):700(in Chinese).
朱飞龙,李庚英,杜虹,等.一种基于微生物沉积的水泥砂浆表面改性技术[J].功能材料,2013,44(5):700.
[1] 李地红, 夏娴, 王艳君, 张景卫, 许国栋. 镶嵌式混凝土构件加固、补强、修复技术研究[J]. 材料导报, 2019, 33(z1): 225-228.
[2] 施方长, 王玉, 高延敏. 改性含N小分子用于金属表面锈层处理对环氧涂层防腐性能的研究[J]. 材料导报, 2019, 33(z1): 523-526.
[3] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[4] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[5] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[6] 李地红, 夏娴, 高群, 代函函, 于海洋. 镶嵌式加固混凝土构件加固区域力学行为的有限元分析[J]. 材料导报, 2019, 33(z1): 249-253.
[7] 黄艳玲, 元强, 刘耀强, 赵虎, 王跃跃, 左胜浩, 周大军, 孙泽川. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(z1): 254-260.
[8] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[9] 兰明章, 聂松, 王剑锋, 张巧伟, 陈智丰. 古建筑修复用石灰基砂浆的研究进展[J]. 材料导报, 2019, 33(9): 1512-1516.
[10] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[11] 李霖皓, 龙广成, 刘芳萍, 石晔, 马聪, 谢友均. 混凝土在蒸养过程中的变形性能[J]. 材料导报, 2019, 33(8): 1322-1327.
[12] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[13] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[14] 乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(4): 639-643.
[15] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed