Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1267-1270    https://doi.org/10.11896/j.issn.1005-023X.2018.08.012
  材料研究 |
高频感应熔化金属丝气雾化制备球形钛粉
陆亮亮1,2, 刘雪峰2, 张少明1, 徐骏1, 贺会军3, 盛艳伟3
1 北京有色金属研究总院,北京 100088;
2 北京科技大学材料科学与工程学院,北京 100083;
3 北京康普锡威科技有限公司,北京 101407
A Combinatorial Technique Incorporating High Frequency Inductive Heating and Gas Atomization for Preparing Spherical Titanium Powders from Titanium Wires
LU Liangliang1,2, LIU Xuefeng2, ZHANG Shaoming1, XU Jun1,
HE Huijun3, SHENG Yanwei3
1 Beijing General Research Institute for Nonferrous Metals, Beijing 100088;
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083;
3 Beijing COMPO Advanced Technology Co. Ltd, Beijing 101407
下载:  全 文 ( PDF ) ( 1418KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 提出了新型低成本球形钛粉气雾化制备技术——高频感应熔化金属丝气体雾化技术(Wire induction heating-gas atomization,WIGA),研究了雾化气体压力、熔体温度、送料速度对粉末性能的影响。结果表明:所制钛粉末的形貌为球形,球形度较高,粉末表面存在少量“卫星球”颗粒,占比约为1%;提高雾化压力、熔体温度和降低送丝速度均使粉末平均粒径D50减小。实验所得最佳雾化参数为:雾化气体压力4.0 MPa,熔体温度2 000 ℃,送料速度0.8 m/min,在此条件下得到的钛粉末平均粒径为41.8 μm。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陆亮亮
刘雪峰
张少明
徐骏
贺会军
盛艳伟
关键词:  球形钛粉  气雾化  雾化压力  熔体温度  送丝速度    
Abstract: A novel low-cost spherical titanium powder process, wire induction heating-gas atomization (WIGA), was proposed in the present work. The effects of the gas pressure, metal temperature and the feeding speed on the particle size of the tita-nium powder were studied. The results indicated that the powders were spherical with rare satellite particles on the surface, the satellite particles accounted for one percent. The average particle size of powders decreased and the producing efficiency of fine size powders increased with the increase of gas atomization pressure, melt temperature, or with the decrease of feeding speed. The optimum parameters were gas pressure of 4.0 MPa, metal melt temperature of 2 000 ℃ and wire-feed speed of 0.8 m/min. Under the optimized condition, the average particle size of titanium powder was 41.8 micrometers, powder morphology was spherical, and “satellite” powders rarely existed on the surface of particles.
Key words:  spherical titanium powder    gas atomization    gas atomization pressure    melt temperature    wire feed speed
               出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TG146.2  
基金资助: 国家高技术研究发展计划(863计划)(2015AA042501)
作者简介:  陆亮亮:1987年生,博士,研究方向为高性能金属粉末气雾化制备技术 E-mail:zyfrg2008@163.com
引用本文:    
陆亮亮, 刘雪峰, 张少明, 徐骏, 贺会军, 盛艳伟. 高频感应熔化金属丝气雾化制备球形钛粉[J]. 《材料导报》期刊社, 2018, 32(8): 1267-1270.
LU Liangliang, LIU Xuefeng, ZHANG Shaoming, XU Jun, HE Huijun, SHENG Yanwei. A Combinatorial Technique Incorporating High Frequency Inductive Heating and Gas Atomization for Preparing Spherical Titanium Powders from Titanium Wires. Materials Reports, 2018, 32(8): 1267-1270.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.012  或          http://www.mater-rep.com/CN/Y2018/V32/I8/1267
1 Huang W D, Lin X. Research process in laser solid forming of high performance metallic component[J].Materials China,2010,29(6):12(in Chinese).
黄卫东,林鑫.激光立体成形高性能金属零件研究进展[J].中国材料进展,2010,29(6):12.
2 Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: Materials, processes and mechanisms[J].International Materials Reviews,2012,57(3):133.
3 Murr L E, Gaytan S M, Ramirez D A, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies[J].Journal of Materials Science Technology,2012,28(1):8.
4 Huang S H, Liu P, Mokasdar A, et al. Additive manufacturing and its societal impact: A literature review[J].International Journal of Advanced Manufacturing Technology,2013,67(5-8):1191.
5 Sun P, Fanga Z Z, Yang X, et al. A novel method for production of spherical Ti-6Al-4V powder for additive manufacturing[J].Powder Technology,2016,301:331.
6 Hernandez J, Li S J, Martinez E. Microstructures and hardness properties for β-phase Ti-24Nb-4Zr-7.9Sn alloy fabricated by electron beam melting[J].Journal Materials Science Technology,2013,29(11):1011.
7 Yang X, Xi Z P, Liu Y. Characterization of TiAl powders prepared by plasma rotating electrode processing[J].Rare Metal Materials and Engineering,2010,39(12):2251(in Chinese).
杨鑫,奚正平,刘咏.等离子旋转电极法制备钛铝粉末性能表征[J].稀有金属材料与工程,2010,39(12):2251.
8 Badrossamay M, Childs T H C. Further studies in selective laser melting of stainless and tool steel powders[J].International Journal of Machine Tools and Manufacture,2007,47(5):779.
9 Kim Y, Kim E P, Song Y B, et al. Microstructure and mechanical properties of hot isostatically pressed Ti-6Al-4V alloy[J].Journal of Alloys and Compounds,2014,603:207.
10 Zhao X M, Xu J, Zhu X X. Effect of atomization gas pressure variation on the gas flow field in supersonic gas atomization[J].Science China Series E:Technology Science,2009,52(10):3046(in Chinese).
赵新明,徐骏,朱学新.气体压强对超音速气体雾化流场的影响[J].中国科学E辑:技术科学,2009,52(10):3046.
11 Wolf G, Bergmann H W. Investigations on melt atomization with gas and liquefied cryogenic gas[J].Material Science and Engineering A,2002,326:134.12 Minagawa K, Kakisawa H, Osawa Y, et al. Production of fine spherical lead-free solder powders by hybrid atomization[J].Science and Technology of Advanced Materials,2005,6:325.
13 Dunkley J J, Parlmer J D. Factors affecting particle size of atomized metal powders[J].Powder Metallurgy,1986,9(4):287.
14 Ünal A. Liquid break-up in gas atomization of fine aluminum powders[J].Metallurgical Transactions B,1989,20(2):61.
15 Nichiporenko O S, Naida Y I. Fashioning the shape of sprayed powder particles[J].Soviet Powder metallurgy & Metal Ceramics,1968,10:1.
16 Anderson I E, Terpstra R L. Process toward gas atomization processing with increased uniformity and control[J].Material Science and Engineering A,2002,326:101.
[1] 张娜,程仁菊,董含武,刘文君,詹俊,蒋斌,潘复生. Sr在耐热镁合金中的应用及研究进展[J]. 材料导报, 2019, 33(15): 2565-2571.
[2] 毛虎,杨宏亮,史晓斌. 纳米晶NiTi形状记忆合金的研究进展[J]. 材料导报, 2019, 33(13): 2237-2242.
[3] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[4] 梁斌斌, 郭炜, 刘振兴, 杨洪广. 高活性氚钛靶膜固氦特性研究[J]. 材料导报, 2019, 33(z1): 153-157.
[5] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[6] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[7] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[8] 郑嫄, 蔡中义, 程丽任, 车朝杰, 张洪杰. 铸态和挤压态Mg-4Sm-Al-0.3Mn-xZn合金微观组织和力学性能研究[J]. 材料导报, 2019, 33(8): 1354-1360.
[9] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[10] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[11] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[12] 周杰, 李克, 王彪, 艾凡荣. 添加Nd对Mg-Zn-Ca合金非晶形成能力和耐蚀性的影响[J]. 材料导报, 2019, 33(1): 73-77.
[13] 黄硕文, 黄春平, 吴中文, 夏春, 刘奋成, 柯黎明. 后热处理对搅拌摩擦加工制备Al-Ti复合材料组织特征的影响[J]. 材料导报, 2018, 32(22): 3908-3912.
[14] 薛喜丽, 陈鑫, 李龙, 周德敬. Mn、Fe含量对3003铝合金铸锭均匀化行为的影响[J]. 材料导报, 2018, 32(22): 3913-3918.
[15] 程鹏, 陈云贵, 丁武成, 王春明. 热挤压Mg-3Sn-1Zn-xCu合金的显微组织与力学性能[J]. 材料导报, 2018, 32(20): 3562-3565.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed