Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1267-1270    https://doi.org/10.11896/j.issn.1005-023X.2018.08.012
  材料研究 |
高频感应熔化金属丝气雾化制备球形钛粉
陆亮亮1,2, 刘雪峰2, 张少明1, 徐骏1, 贺会军3, 盛艳伟3
1 北京有色金属研究总院,北京 100088;
2 北京科技大学材料科学与工程学院,北京 100083;
3 北京康普锡威科技有限公司,北京 101407
A Combinatorial Technique Incorporating High Frequency Inductive Heating and Gas Atomization for Preparing Spherical Titanium Powders from Titanium Wires
LU Liangliang1,2, LIU Xuefeng2, ZHANG Shaoming1, XU Jun1,
HE Huijun3, SHENG Yanwei3
1 Beijing General Research Institute for Nonferrous Metals, Beijing 100088;
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083;
3 Beijing COMPO Advanced Technology Co. Ltd, Beijing 101407
下载:  全 文 ( PDF ) ( 1418KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 提出了新型低成本球形钛粉气雾化制备技术——高频感应熔化金属丝气体雾化技术(Wire induction heating-gas atomization,WIGA),研究了雾化气体压力、熔体温度、送料速度对粉末性能的影响。结果表明:所制钛粉末的形貌为球形,球形度较高,粉末表面存在少量“卫星球”颗粒,占比约为1%;提高雾化压力、熔体温度和降低送丝速度均使粉末平均粒径D50减小。实验所得最佳雾化参数为:雾化气体压力4.0 MPa,熔体温度2 000 ℃,送料速度0.8 m/min,在此条件下得到的钛粉末平均粒径为41.8 μm。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陆亮亮
刘雪峰
张少明
徐骏
贺会军
盛艳伟
关键词:  球形钛粉  气雾化  雾化压力  熔体温度  送丝速度    
Abstract: A novel low-cost spherical titanium powder process, wire induction heating-gas atomization (WIGA), was proposed in the present work. The effects of the gas pressure, metal temperature and the feeding speed on the particle size of the tita-nium powder were studied. The results indicated that the powders were spherical with rare satellite particles on the surface, the satellite particles accounted for one percent. The average particle size of powders decreased and the producing efficiency of fine size powders increased with the increase of gas atomization pressure, melt temperature, or with the decrease of feeding speed. The optimum parameters were gas pressure of 4.0 MPa, metal melt temperature of 2 000 ℃ and wire-feed speed of 0.8 m/min. Under the optimized condition, the average particle size of titanium powder was 41.8 micrometers, powder morphology was spherical, and “satellite” powders rarely existed on the surface of particles.
Key words:  spherical titanium powder    gas atomization    gas atomization pressure    melt temperature    wire feed speed
出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TG146.2  
基金资助: 国家高技术研究发展计划(863计划)(2015AA042501)
作者简介:  陆亮亮:1987年生,博士,研究方向为高性能金属粉末气雾化制备技术 E-mail:zyfrg2008@163.com
引用本文:    
陆亮亮, 刘雪峰, 张少明, 徐骏, 贺会军, 盛艳伟. 高频感应熔化金属丝气雾化制备球形钛粉[J]. 《材料导报》期刊社, 2018, 32(8): 1267-1270.
LU Liangliang, LIU Xuefeng, ZHANG Shaoming, XU Jun, HE Huijun, SHENG Yanwei. A Combinatorial Technique Incorporating High Frequency Inductive Heating and Gas Atomization for Preparing Spherical Titanium Powders from Titanium Wires. Materials Reports, 2018, 32(8): 1267-1270.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.012  或          https://www.mater-rep.com/CN/Y2018/V32/I8/1267
1 Huang W D, Lin X. Research process in laser solid forming of high performance metallic component[J].Materials China,2010,29(6):12(in Chinese).
黄卫东,林鑫.激光立体成形高性能金属零件研究进展[J].中国材料进展,2010,29(6):12.
2 Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: Materials, processes and mechanisms[J].International Materials Reviews,2012,57(3):133.
3 Murr L E, Gaytan S M, Ramirez D A, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies[J].Journal of Materials Science Technology,2012,28(1):8.
4 Huang S H, Liu P, Mokasdar A, et al. Additive manufacturing and its societal impact: A literature review[J].International Journal of Advanced Manufacturing Technology,2013,67(5-8):1191.
5 Sun P, Fanga Z Z, Yang X, et al. A novel method for production of spherical Ti-6Al-4V powder for additive manufacturing[J].Powder Technology,2016,301:331.
6 Hernandez J, Li S J, Martinez E. Microstructures and hardness properties for β-phase Ti-24Nb-4Zr-7.9Sn alloy fabricated by electron beam melting[J].Journal Materials Science Technology,2013,29(11):1011.
7 Yang X, Xi Z P, Liu Y. Characterization of TiAl powders prepared by plasma rotating electrode processing[J].Rare Metal Materials and Engineering,2010,39(12):2251(in Chinese).
杨鑫,奚正平,刘咏.等离子旋转电极法制备钛铝粉末性能表征[J].稀有金属材料与工程,2010,39(12):2251.
8 Badrossamay M, Childs T H C. Further studies in selective laser melting of stainless and tool steel powders[J].International Journal of Machine Tools and Manufacture,2007,47(5):779.
9 Kim Y, Kim E P, Song Y B, et al. Microstructure and mechanical properties of hot isostatically pressed Ti-6Al-4V alloy[J].Journal of Alloys and Compounds,2014,603:207.
10 Zhao X M, Xu J, Zhu X X. Effect of atomization gas pressure variation on the gas flow field in supersonic gas atomization[J].Science China Series E:Technology Science,2009,52(10):3046(in Chinese).
赵新明,徐骏,朱学新.气体压强对超音速气体雾化流场的影响[J].中国科学E辑:技术科学,2009,52(10):3046.
11 Wolf G, Bergmann H W. Investigations on melt atomization with gas and liquefied cryogenic gas[J].Material Science and Engineering A,2002,326:134.12 Minagawa K, Kakisawa H, Osawa Y, et al. Production of fine spherical lead-free solder powders by hybrid atomization[J].Science and Technology of Advanced Materials,2005,6:325.
13 Dunkley J J, Parlmer J D. Factors affecting particle size of atomized metal powders[J].Powder Metallurgy,1986,9(4):287.
14 Ünal A. Liquid break-up in gas atomization of fine aluminum powders[J].Metallurgical Transactions B,1989,20(2):61.
15 Nichiporenko O S, Naida Y I. Fashioning the shape of sprayed powder particles[J].Soviet Powder metallurgy & Metal Ceramics,1968,10:1.
16 Anderson I E, Terpstra R L. Process toward gas atomization processing with increased uniformity and control[J].Material Science and Engineering A,2002,326:101.
[1] 吴嘉伦, 夏敏, 王军峰, 葛昌纯. 电极感应熔炼气雾化法制备粉末冶金增材制造原材料金属粉末的研究综述[J]. 材料导报, 2023, 37(21): 22040132-8.
[2] 钟伟杰, 焦东玲, 邱万奇, 刘仲武. 熔体温度和雾化压力对氩气雾化镍基高温合金粉末的影响[J]. 材料导报, 2023, 37(10): 21070245-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed