Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 22040132-8    https://doi.org/10.11896/cldb.22040132
  金属与金属基复合材料 |
电极感应熔炼气雾化法制备粉末冶金增材制造原材料金属粉末的研究综述
吴嘉伦, 夏敏*, 王军峰, 葛昌纯*
北京科技大学材料科学与工程学院,粉末冶金与先进陶瓷研究所,北京 100083
Raw Metal Powders Production for Powder Metallurgy Additive Manufacturing by Electrode Induction Melting Gas Atomization Method: a Review
WU Jialun, XIA Min*, WANG Junfeng, GE Changchun*
Institute of Powder Metallurgy and Advanced Ceramics, University of Science & Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 27865KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电极感应熔炼气雾化 (Electrode induction melting gas atomization,EIGA) 是一种制备超洁净无夹杂物金属粉末的先进制粉技术,由于其工艺过程中不使用耐火材料并且所制备粉体具有粒径小、球形度高、无夹杂物等特点,目前已成为大规模制备粉末冶金增材制造用超洁净金属粉末的重要方法。但国内对于EIGA技术引进较晚,对其工艺设计研究还未达到德国等先进国家的水平,因此,本文综述了自1991年德国ALD公司申请专利30年以来EIGA技术的发展及工艺研究现状,对EIGA技术的优点进行了汇总,归纳了EIGA技术的机理研究脉络与技术要点,并通过纵观气雾化制粉的发展历程对EIGA技术的未来发展做了展望,为粉末冶金和增材制造原材料粉末的制备提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴嘉伦
夏敏
王军峰
葛昌纯
关键词:  电极感应熔炼气雾化  气雾化  粉末冶金  增材制造  金属粉末    
Abstract: Electrode induction melting gas atomization (EIGA) process is a newly developed method of preparing ultra-clean metal powders. At present, it has become an important method for large-scale preparation of metal powders, especially ultra-clean metal powders for powder metallurgy additive manufacturing. This review introduced the development and process research status of EIGA technology since the patent application of ALD company in 1991, summarized the advantages of EIGA technology, the mechanism and technical points of EIGA technology, and prospected the future development of EIGA technology via the development process of gas atomization, which provides a reference for the preparation of raw material powder for powder metallurgy and additive manufacturing.
Key words:  EIGA    gas atomization    powder metallurgy    additive manufacturing    metal powder
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  TF123  
基金资助: 中央高校基本科研业务费专项资金资助项目(FRF-GF-19-0058)
通讯作者:  *夏敏,2007年6月于内江师范学院获得理学学士学位,2013年于西安交通大学获得工学博士学位。2015年至今在北京科技大学材料科学与工程学院作博士后研究,并担任讲师工作。主要研究方向为低维纳米材料、3D打印用粉末的制备技术、透射电镜表征技术、高性能钢的研发和钢的表面纳米化处理技术、粉末冶金工艺制备高性能块体材料,共发表SCI论文50余篇。xmdsg@ustb.edu.cn 葛昌纯,1949年考入国立唐山工学院(即唐山交通大学)矿冶系,1952年毕业于北方交通大学(由唐山工学院和北平铁道管理学院组成)唐山铁道学院冶金系冶金物理冶金专业。1952—1984年在冶金部钢铁冶金总院先后在冶金室、压力加工室、粉末冶金室担任专题负责人、高级工程师、研究室副主任。1980年10月—1983年4 月作为德国洪堡基金会研究员在Max-Planck材料科学研究所和柏林工大非金属材料研究所从事粉末冶金和先进陶瓷研究,获Dresden技术大学工学博士学位。1985年起在北京科技大学从事研究和教学工作,晋升为教授、博士研究生导师。2001年被选为中国科学院院士。1988年被人事部评定为“国家有突出贡献中青年专家”,1990年被国家教委和国家科委评定“全国高校先进科技工作者”。中国金属学会粉末冶金专业委员会特种材料与制品学术委员会主任委员;世界陶瓷科学院层状和梯度材料学会主席;世界陶瓷科学院自蔓延高温合成学会理事;Key Engineering Materials International Journal of SHS Materials Technology和“粉末冶金工业”等国际、国内刊物的编委,共发表SCI论文100余篇。ccge@mater.ustb.edu.cn   
作者简介:  吴嘉伦,2018年6月于北京科技大学获得工学学士学位。2023年6月于北京科技大学材料科学与工程学院获得博士学位,师从葛昌纯教授。现就职于北京钢研高纳科技股份有限公司,目前主要研究领域为气雾化制粉与镍基高温合金的研制。
引用本文:    
吴嘉伦, 夏敏, 王军峰, 葛昌纯. 电极感应熔炼气雾化法制备粉末冶金增材制造原材料金属粉末的研究综述[J]. 材料导报, 2023, 37(21): 22040132-8.
WU Jialun, XIA Min, WANG Junfeng, GE Changchun. Raw Metal Powders Production for Powder Metallurgy Additive Manufacturing by Electrode Induction Melting Gas Atomization Method: a Review. Materials Reports, 2023, 37(21): 22040132-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040132  或          http://www.mater-rep.com/CN/Y2023/V37/I21/22040132
1 Chen Y Y, Xiao Z Y, Li S K, et al. Powder Metallurgy Industry, 2018, 28(4), 56 (in Chinese).
陈莹莹, 肖志瑜, 李上奎, 等. 粉末冶金工业, 2018, 28(4), 56.
2 Wang B Y, Lu L, Wu W H, et al. Powder Metallurgy Industry, 2019, 29(5), 74 (in Chinese).
王博亚, 卢林, 吴文恒, 等. 粉末冶金工业, 2019, 29(5), 74.
3 Radchenko O K, Gogaev K O. Powder Metallurgy and Metal Ceramics, 2022, 61(3), 135.
4 Zhu H, Tong H, Yang F, et al. Journal of Materials Processing Techno-logy, 2018, 252, 559.
5 Hu L X, Feng X Y. Powder Metallurgy Industry, 2018, 28(4), 1 (in Chinese).
胡连喜, 冯小云. 粉末冶金工业, 2018, 28(4), 1.
6 Gao Z J, Zhou X L, Li J H, et al. Thermal Spray Technology, 2018, 10(3), 1 (in Chinese).
高正江, 周香林, 李景昊, 等. 热喷涂技术, 2018, 10(3), 1.
7 Bei D, Hu Y X, Cao Y J. Production of metal powder by atomization, Metallurgical Industry Press, China, 1985(in Chinese).
贝多, 胡云秀, 曹勇家. 雾化法生产金属粉末, 冶金工业出版社, 1985.
8 Conference S, Burke J J, Weiss V. Powder metallurgy for high-perfor-mance applications, Syracuse University Press, U.S., 1972.
9 Dunkley J. Powder Metallurgy, 1989, 32(2), 96.
10 Li Q Q, Ou Y T, Ma R H, et al. Powder Metallurgy Technology, 1996, 14(3), 8 (in Chinese).
李清泉, 欧阳通, 麻润海, 等. 粉末冶金技术, 1996, 14(3), 8.
11 Li Q Q. Powder Metallurgy Industry, 1999, 9(5), 15 (in Chinese).
李清泉. 粉末冶金工业, 1999, 9(5), 15.
12 Liu Y Z, Chen Z H, Huang P Y. Materials Reports, 1997, 11(5), 4 (in Chinese).
刘允中, 陈振华, 黄培云. 材料导报, 1997, 11(5), 4.
13 OUYANG H W, Huang B Y, Chen X, et al. The Chinese Journal of Nonferrous Metals, 2005, 15(7), 6 (in Chinese).
欧阳鸿武, 黄伯云, 陈欣, 等. 中国有色金属学报, 2005, 15(7), 6.
14 Sun J F, Shen J, Li Z Y, et al. Powder Metallurgy Technology, 2000, 18(2), 6 (in Chinese).
孙剑飞, 沈军, 李振宇, 等. 粉末冶金技术, 2000, 18(2), 6.
15 Hohmann M, Ludwig N. Germany patent, DE000004102101(A1). 1992.
16 Wu J L. Study on the optimization and mechanism of EIGA superalloy fine powder yield and powder fluidity. Ph. D. Thesis, University of Science and Technology Beijing, China, 2023 (in Chinese).
吴嘉伦. EIGA高温合金细粉收得率与粉体流动性优化及机理研究. 博士学位论文, 北京科技大学, 2023.
17 Chen C. Journal of the American Society for Information Science and Technology, 2006, 57(3), 359.
18 Schimansky F P, Liu K W, Gerling R. Intermetallics, 1999, 7(11), 1275.
19 Gerling R, Hohmann M, Schimansky F, et al. Materials Science Forum, 2007, 539, 2693.
20 Huang Y, Ye H, Zhang H, et al. Journal of Alloys and Compounds, 2002, 330, 851.
21 Wang G, Zheng Z, Chang L, et al. Acta Metallurgica Sinica, 2011, 47(10), 1263.
22 Guo R, Xu L, Cheng W, et al. Acta Metallurgica Sinica, 2016, 52(7), 842.
23 Guo R, Xu L, Zong B, et al. Acta Metallurgica Sinica-English Letters, 2017, 30(8), 735.
24 Wang G, Xu L, Cui Y, et al. Acta Metallurgica Sinica, 2016, 52(9), 1079.
25 Jia C L, Ge C C, Yan Q Z. Chinese Physics B, 2016, 25(2), 324.
26 Wei M, Chen S, Liang J, et al. Vacuum, 2017, 143, 185.
27 Guo K, Liu C, Chen S, et al. Transactions of Nonferrous Metals Society of China, 2020, 30(1), 147.
28 Liu Z, Huang C, Gao C, et al. Journal of Mining and Metallurgy Section B-metallurgy, 2019, 55(1), 121.
29 Huang C, Liu Z, Wu Y, et al. Rare Metal Materials and Engineering, 2019, 48(10), 3302.
30 Zhao X H, Wang C, Pan F F, et al. Powder Metallurgy Industry, 2019, 29(6), 71 (in Chinese).
赵霄昊, 王晨, 潘霏霏, 等. 粉末冶金工业, 2019, 29(6), 71.
31 Yang Q Y, Wu W H, Zhang L, et al. Powder Metallurgy Industry, 2018, 28(3), 8 (in Chinese).
杨启云, 吴文恒, 张亮, 等. 粉末冶金工业, 2018, 28(3), 8.
32 Liu L P, Chen S Q. Materials Science and Engineering of Powder Metallurgy, 2020, 25(6), 449.
刘联平, 陈仕奇. 粉末冶金材料科学与工程, 2020, 25(6), 449.
33 Le G, Li Q, Dong X, et al. Rare Metal Materials and Engineering, 2017, 46(4), 1162.
34 Lukac F, Dudr M, Musalek R, et al. Journal of Materials Research, 2018, 33(19), 3247.
35 Park J, Na T, Park H, et al. Materials Letters, 2019, 243, 5.
36 Roh G, Park E, Moon J, et al. Archives of Metallurgy and Materials, 2021, 66(3), 795.
37 Guo R P, Xu L, Cheng W X, et al. Acta Metallurgica Sinica, 2016, 52(7), 842 (in Chinese).
郭瑞鹏, 徐磊, 程文祥, 等. 金属学报, 2016, 52(7), 842.
38 Wang G, Zheng Z, Chang L T, et al. Acta Metallurgica Sinica, 2011, 47(10), 1263 (in Chinese).
王刚, 郑卓, 常立涛, 等. 金属学报, 2011, 47(10), 1263.
39 Yang Q Y, Wu W H, Zhang L, et al. Powder Metallurgy Industry, 2018, 28(3), 8 (in Chinese).
杨启云, 吴文恒, 张亮, 等. 粉末冶金工业, 2018, 28(3), 8.
40 Wang J J. Powder Metallurgy Industry, 2016, 26(5), 1 (in Chinese).
王建军. 粉末冶金工业, 2016, 26(5), 1.
41 Chen X. Study on flow field structure and atomization mechanism of tightly coupled gas atomization. Master's Thesis, Central South University, China, 2007 (in Chinese).
陈欣. 紧耦合气雾化流场结构和雾化机理研究. 硕士学位论文, 中南大学, 2007.
42 Ouyang H W, Chen X, Yu W T, et al. Powder Metallurgy Technology, 2007, 25(1), 53 (in Chinese).
欧阳鸿武, 陈欣, 余文焘, 等. 粉末冶金技术, 2007, 25(1), 53.
43 Bojarevics V, Roy A, Pericleous K. Compel-the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2011, 30(5), 1455.
44 Shan F, Xia M, Ge C. International Journal of Material Forming, 2019, 12(4), 615.
45 Feng S, Xia M, Ge C. Chinese Physics B, 2018, 27(4), 339.
46 Feng S, Xia M, Ge C. Chinese Physics B, 2017, 26(6), 1.
47 Spitans S, Franz H, Baake E. Metallurgical and Materials Transactions B-process Metallurgy and Materials Processing Science, 2020, 51(5), 1918.
48 Li H, Shen Y, Liu P, et al. Scientific Reports, 2021, 11(1), 23106.
49 Guo K, Liu C, Chen S, et al. In: 4th International Conference on Advanced Composite Materials and Manufacturing Engineering. China, 2017, pp. 1757.
50 Zeoli N, Gu S. Computational Materials Science, 2006, 38(2), 282.
51 Zou H, Xiao Z. Materials Today Communications, 2021, 29(5), 102778.
52 Zeoli N, Tabbara H, Gu S. Chemical Engineering Science, 2011, 66(24), 6498.
53 Firmansyah D, Kaiser R, Zahaf R, et al. Japanese Journal of Applied Physics, 2014, 53(5), HA09.
54 Xia M, Wang P, Zhang X, et al. Acta Physica Sinica, 2018, 67(17), 41 (in Chinese).
夏敏, 汪鹏, 张晓虎, 等. 物理学报, 2018, 67(17), 41.
55 Xia M, Wang P, Zhang X H, et al. Powder Metallurgy Technology, 2019, 37(4), 288 (in Chinese).
夏敏, 汪鹏, 张晓虎, 等. 粉末冶金技术, 2019, 37(4), 288.
[1] 李欢, 刘千喜, 曹彪, 张长鑫, 钱利勤, 周亢. 铝/铜超声波焊接与连接的研究进展[J]. 材料导报, 2023, 37(S1): 23040197-11.
[2] 彭乐, 郑志军. 激光选区熔化成形金属件的缺陷类型及表征方法概述[J]. 材料导报, 2023, 37(8): 21050053-7.
[3] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[4] 刘婷, 朱宇, 胡晓, 张松. 超声增材制造在航空航天领域的应用进展[J]. 材料导报, 2023, 37(2): 21040295-8.
[5] 罗晓宇, 冯曰海, 赵鑫, 刘思余. 镁合金摆动多道增材层成形特征参数与尺寸控制规律研究[J]. 材料导报, 2023, 37(18): 22040093-7.
[6] 杨新异, 黄群英. 球磨转速对含钆ODS钢中M23C6析出的影响研究[J]. 材料导报, 2023, 37(17): 22030003-6.
[7] 黄健康, 吴昊盛, 于晓全, 刘光银, 余淑荣. 钛合金电弧增材制造工艺及微观组织调控的研究现状[J]. 材料导报, 2023, 37(14): 21100070-6.
[8] 黄忠利, 黄健康, 张宏福, 于晓全, 刘光银, 樊丁. 不同脉冲模式下熔滴过渡对铝合金增材微观组织及力学性能的影响[J]. 材料导报, 2023, 37(14): 21100128-5.
[9] 陆万全, 乔及森, 王磊, 刘永涛, 冯睿, 祝伟. 960高强钢脉冲TIG电弧增材制造热过程及组织与力学性能研究[J]. 材料导报, 2023, 37(14): 21110135-7.
[10] 吴靓, 周子坤, 姬丽, 肖逸锋, 张乾坤. 多孔Ni-Cu-Ti电极的制备及析氢性能[J]. 材料导报, 2023, 37(13): 21100074-9.
[11] 颉芳霞, 黄家兵, 曹澍, 杨豪, 何雪明. 钛合金羟基磷灰石骨植入复合材料的研究进展[J]. 材料导报, 2023, 37(13): 21070222-7.
[12] 杨温鑫, 孟晓燕, 邓欣. 粉体粒径对数字光处理3D打印金刚石复合材料性能的影响[J]. 材料导报, 2023, 37(12): 21120211-6.
[13] 申发磊, 殷凤仕, 李星晨, 杜文祥, 郭娜娜, 方晓英. 基于光固化技术增材制造陶瓷和金属的研究进展[J]. 材料导报, 2023, 37(12): 21110009-10.
[14] 张爵灵, 王林山, 郑逢时, 胡强, 汪礼敏. 粉末冶金多孔铝的研究进展[J]. 材料导报, 2023, 37(12): 21100151-8.
[15] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed