Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 22040096-7    https://doi.org/10.11896/cldb.22040096
  金属与金属基复合材料 |
选区激光熔化IN718合金固溶过程成分均匀化规律的研究
曹宇1,2,3, 白朴存1,*, 刘飞1, 侯小虎1
1 内蒙古工业大学材料科学与工程学院,呼和浩特 015000
2 呼伦贝尔学院机电工程学院,内蒙古 呼伦贝尔 021008
3 内蒙古自治区高校矿产资源安全开采与综合利用工程研究中心,内蒙古 呼伦贝尔 021008
Study on Composition Homogenization of IN718 Alloy Fabricated by Selective Laser Melting During Solid Solution Treatment
CAO Yu1,2,3, BAI Pucun1,*, LIU Fei1, HOU Xiaohu1
1 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 015000, China
2 School of Mechanical and Electrical Engineering, Hulunbuir University, Hulunbuir 021008, Inner Mongolia, China
3 Research Center for Mining and Comprehensive Utilization of Mineral Resources of Inner Mongolia Autonomous Region, Hulunbuir 021008, Inner Mongolia, China
下载:  全 文 ( PDF ) ( 45425KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 选区激光熔化技术具有成形自由度高、成形精度高、成形效率高的优势,在高温合金的曲面结构的制造中具有巨大的应用潜力。本工作采用选区激光熔化技术制备IN718合金,并对合金进行不同条件下的固溶热处理,利用SEM、TEM以及XRD等多种手段研究了沉积态合金中的成分偏析、析出相的分布、固溶过程中成分均匀化的规律、最短固溶时间和固溶温度之间的函数关系,以及固溶冷却过程中析出相的形成过程。结果表明:合金制备过程中较快的凝固速率使得合金在晶界处及亚结构的边界处产生了Nb、Ti元素的成分偏析带,偏析带的厚度约为50 nm,并且在成分偏析带形成了Laves相和MX相。在高于980 ℃的条件下对沉积态合金进行固溶处理,成分偏析带回溶,最短固溶时间与最低固溶温度的关系为:$t=\frac{1}{3167} \cdot \exp \left(\frac{21597}{T}\right)$。固溶后较低的冷却速率会使合金中产生γ″相,增加合金的硬度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹宇
白朴存
刘飞
侯小虎
关键词:  选区激光熔化  IN718合金  均匀化  析出相    
Abstract: Selective laser melting technology has the advantages of high forming freedom, high forming precision and high forming efficiency. It has great application potential in manufacturing curved surface structure of superalloy. In this work, IN718 alloy was prepared by selective laser melting technology, and the alloy was subjected to solution heat treatment under different conditions. The composition segregation, the distribution of precipitates, the law of composition homogenization in the process of solution, the functional relationship between the shortest solution time and solution temperature, and the formation process of precipitates in the process of solution cooling were studied by means of SEM, TEM and XRD. The results show that the faster solidification rate during the preparation of the alloy makes the composition segregation band of Nb and Ti elements appear at the grain boundary and the boundary of substructure. The thickness of the segregation band is about 50 nm, and Laves phase and MX phase are formed in the composition segregation band. When the temperature is higher than 980 ℃, the component segregation will solute to the matrix. The relationship between the shortest solution time andthe lowest solution temperature is:$t=\frac{1}{3167} \cdot \exp \left(\frac{21597}{T}\right)$. The lower cooling rate will cause the formation of γ″ phase during solution cooling process, which will increase the hardness of the alloy.
Key words:  selective laser melting    IN718 alloy    composition homogenization    precipitates
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  TG156  
基金资助: 国家自然科学基金(11672140);内蒙古自治区矿产资源安全开采与综合利用研究中心重点项目(2021KZZD04);内蒙古自治区高校科研一般项目(NJZY23051);中央引导地方科技发展资金(2022ZY0183)
通讯作者:  *白朴存,内蒙古工业大学材料科学与工程学院教授。1989年本科毕业于内蒙古工学院材料工艺系铸造工艺与设备专业,获得工学学士学位;1992年于西安交通大学机械工程系铸造专业获得工学硕士学位;2003年于北京航空航天大学材料科学与工程学院材料学专业获得工学博士学位。主要从事有色金属材料特种制备、金属材料激光增材制造、材料微观组织结构分析与表征、材料服役性能评价等研究工作。在国内外学术期刊上已发表学术论文80余篇,其中SCI/EI 收录40余篇;授权发明专利5项。Pcbai@imut.edu.cn   
作者简介:  曹宇,2012年7月在山东大学取得硕士学位,2021年7月在内蒙古工业大学取得博士学位,2021年9月进入内蒙古工业大学博士后流动工作站,导师为白朴存教授。目前主要的研究领域为:激光增材制造高温合金的微观组织结构和微观力学行为。
引用本文:    
曹宇, 白朴存, 刘飞, 侯小虎. 选区激光熔化IN718合金固溶过程成分均匀化规律的研究[J]. 材料导报, 2023, 37(21): 22040096-7.
CAO Yu, BAI Pucun, LIU Fei, HOU Xiaohu. Study on Composition Homogenization of IN718 Alloy Fabricated by Selective Laser Melting During Solid Solution Treatment. Materials Reports, 2023, 37(21): 22040096-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040096  或          http://www.mater-rep.com/CN/Y2023/V37/I21/22040096
1 Yuan Z W, Chang F C, Ma R, et al, Materials Reports, 2022, 36(3), 206 (in Chinese)
袁战伟, 常逢春, 马瑞, 等. 材料导报, 2022, 36(3), 206.
2 Feng S N. Effect of heat treatment on microstructure and anisotropy of mechanical properties of SLM-IN718 alloy. Master's Thesis, Shandong University, China, 2020 (in Chinese)
冯胜男. 热处理对SLM-IN718合金的微观组织以及力学性能各向异性的影响. 硕士学位论文, 山东大学, 2020.
3 Zhang Y C, Li Y, Chen T Y, et al. Optics and Laser Technology, 2017, 97(2017), 172 .
4 Zhang D Y, Niu W W, Cao X Y, et al. Materials Science & Engineering A, 2015, 644(2015), 32.
5 Liu Y C, Guo Q Y, Li C, et al. Acta Metallurgica Sinica, 2016, 52(10), 1259.
刘永长, 郭倩颖, 李冲, 等. 金属学报, 2016, 52(10), 1259.
6 De J H. Journal of Materials Science & Technology, 1994, 23(4), 293.
7 Cao G H, Sun T Y, Wang C H, et al. Materials Characterization, 2018, 136, 398.
8 Kirman I, Warrington D H. Metallurgical Transactions, 1970, 1(10), 2667.
9 Huang W D, Li Y M, Feng L P. Material Engineering, 2002(3), 40(in Chinese)
黄卫东, 李延民, 冯丽萍. 材料工程, 2002(3), 40.
10 Herzog D, Seyda V, Wycisk E, et al. Acta Materialia, 2016, 117, 371.
11 Frazier W E. Journal of Materials Engineering and Performance, 2014, 23(6), 1917.
12 Trosch T, Stroessner J, Yoelkl R, et al. Materials Letters, 2016, 164(2), 428.
13 Wang Z, Guan K, Gao M. Journal of Alloys and Compounds, 2012, 513, 518.
14 Zhang Y. Optics & Laser Technology, 2017, 97, 172.
15 Lv X, Wen B, Du J. Rare Metal Materials and Engineering, 2019, 48(5), 1386.
16 Le Z, Abhishek M, Brandon M W, et al. Journal of Materials Science & Technology, 2019, 35(6), 210
17 Knorovsky G A, Cieslak M J, Headley T J, et al. Metallurgical Transactions A, 1989, 20(10), 2149.
18 Radhakrishna C H, Rao K P. Journal of Materials Science, 1997, 32(8), 1977.
19 Strner J , Terock M , Glatzel U. Advanced Engineering Materials, 2015, 17(8), 1099.
20 Huang W, Yang J, Yang H, et al. Materials Science and Engineering A, 2019, 750(18), 98.
21 Zhou L X, Baker T N. Materials Science & Engineering A, 1995, 196(1-2), 89.
22 Tian Y, Mcallister D, Colijn H. Metallurgical & Materials Transactions A, 2014, 45(10), 4470.
23 Xiao Y L, Pan Q L, Xi F, et al. Journal of Alloys & Compounds, 2009, 484(12), 790.
[1] 孙钢, 熊茹, 唐睿, 张乐福, 周张健. 含铝奥氏体不锈钢的强化相析出调控和蠕变性能研究进展[J]. 材料导报, 2023, 37(9): 21060054-7.
[2] 彭乐, 郑志军. 激光选区熔化成形金属件的缺陷类型及表征方法概述[J]. 材料导报, 2023, 37(8): 21050053-7.
[3] 卢超, 曹建春, 陈伟, 刘星, 张永青, 阴树标. 再加热温度对Nb微合金化钢筋连续冷却相变及组织与性能的影响[J]. 材料导报, 2023, 37(8): 21100016-8.
[4] 余瑞, 张永安, 李亚楠, 李锡武, 李志辉, 闫丽珍, 温凯, 熊柏青. Zn对Al-Mg-Si合金时效析出相稳定性影响的第一性原理研究[J]. 材料导报, 2023, 37(4): 21040034-5.
[5] 梁梦, 黎振华, 刘美红, 罗心磊, 解靖伟. 选区激光熔化Fe-10Cu合金成形工艺优化研究[J]. 材料导报, 2023, 37(14): 21110123-7.
[6] 袁信翊, 刘杨, 李明轩, 陆晓峰, 朱晓磊. 基于打印参数的选区激光熔化构件内部形貌调控研究现状[J]. 材料导报, 2022, 36(21): 20080263-9.
[7] 滕宝仁, 黎振华, 李淮阳, 杨睿, 申继标. 选区激光熔化制备颗粒增强金属基复合材料的研究进展[J]. 材料导报, 2022, 36(2): 20040170-6.
[8] 李帅贞, 韩晓辉, 吴来军, 刘裕航, 王鹏, 宋晓国, 檀财旺. 层道排布对6005A铝合金MIG焊接头微观组织及力学性能的影响[J]. 材料导报, 2022, 36(17): 21060094-5.
[9] 马玉天, 许佳玉, 高钰璧, 刘博, 胡勇, 丁雨田, 陈大林, 陈韩锋. SLM成形Inconel 738合金缺陷的演变及形成机理[J]. 材料导报, 2022, 36(13): 21040269-7.
[10] 封帆, 王美玲, 李振华, 陆永浩. 超超临界机组用HR3C奥氏体耐热钢研究进展[J]. 材料导报, 2021, 35(9): 9186-9195.
[11] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[12] 刘成龙, 唐正友, 马亮, 马婉婉, 郭昊东, 丁桦. 254SMo超级奥氏体不锈钢时效析出行为及析出相对其力学性能的影响[J]. 材料导报, 2021, 35(24): 24147-24151.
[13] 黄建国, 任淑彬. 选区激光熔化成型铝合金的研究现状及展望[J]. 材料导报, 2021, 35(23): 23142-23152.
[14] 陈帅, 陶凤和, 贾长治, 孙河洋. 选区激光熔化成型4Cr5MoSiV1钢的组织与性能优化[J]. 材料导报, 2021, 35(16): 16126-16132.
[15] 褚夫众, 张曦, 黄文静, 侯娟, 张恺, 黄爱军. 选区激光熔化铝合金缺陷的形成机制和对力学性能的影响:综述[J]. 材料导报, 2021, 35(11): 11110-11118.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed