Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16126-16132    https://doi.org/10.11896/cldb.20050017
  金属与金属基复合材料 |
选区激光熔化成型4Cr5MoSiV1钢的组织与性能优化
陈帅, 陶凤和, 贾长治, 孙河洋
中国人民解放军陆军工程大学石家庄校区火炮工程系,石家庄 050003
Optimization of Microstructure and Properties of 4Cr5MoSiV1 Steel Formed by Selective Laser Melting
CHEN Shuai, TAO Fenghe, JIA Changzhi, SUN Heyang
Artillery Engineering Department,Shijiazhuang Branch, Army Engineering University of PLA, Shijiazhuang 050003, China
下载:  全 文 ( PDF ) ( 6662KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为优化选区激光熔化成型4Cr5MoSiV1钢的组织和性能,研究了支撑结构和激光重熔对4Cr5MoSiV1钢试样表面形貌、显微组织、显微硬度和拉伸性能的影响。结果表明:细晶强化作用、固溶强化作用、析出强化作用和冶金质量的增加可提高试样的力学性能,且冶金质量对力学性能的影响程度较高。SLM成型4Cr5MoSiV1钢试样的抗拉强度为948.6 MPa、断后伸长率为9.3%、顶部表面显微硬度为578.2HV、底部表面显微硬度为560.4HV。支撑结构X/Y间距的减小可增加支撑结构数量、提高支撑作用、增强导热能力,其细晶强化、固溶强化作用和冶金质量增加,力学性能提高。设计切割间距对试样的力学性能影响较小,但支撑去除难度降低。激光边界重熔对试样的力学性能影响较小,而经激光表面重熔后试样的晶粒粗化、晶粒内第二相析出物增多,飞溅颗粒、黑烟颗粒和孔隙缺陷基本消失,力学性能明显提高,其抗拉强度为1 387.2 MPa,断后伸长率为14.6%,顶部表面显微硬度为632.4HV,底部表面显微硬度为608.4HV。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈帅
陶凤和
贾长治
孙河洋
关键词:  选区激光熔化  4Cr5MoSiV1钢  支撑结构  激光重熔  显微组织    
Abstract: In order to optimize the microstructure and properties of 4Cr5MoSiV1 steel formed by selective laser melting technology, the effects of support structure and laser remelting on the morphology, microstructure, microhardness and tensile properties of 4Cr5MoSiV1 steel were studied. The results show that mechanical properties of the samples can be improved by fine grain strengthening, solution strengthening, precipitation strengthening and metallurgical quality increasing, and the metallurgical quality has a higher influence on the mechanical properties. The tensile strength, elongation after fracture, microhardness of top surface and bottom surface of 4Cr5MoSiV1 steel are 948.6 MPa, 9.3%, 578.2HV and 560.4HV respectively. The reduction of X/Y spacing of the support structure can increase the number of support structures, improve the support function, enhance the thermal conductivity, and increase the fine grain strengthening, solution strengthening and metallurgical quality of the samples, so the mechanical properties of the samples are improved. Cutting distance has little effect on the mechanical properties of the samples, but the difficulty of support removal is reduced. The effect of laser boundary remelting on the mechanical properties of the sample is small. After laser surface remelting, the grain coarsening and the second phase precipitation in the grain increase, the splashing particles, black smoke particles and pore defects basically disappear, and the mechanical properties of samples are significantly improved. The tensile strength, elongation after fracture, microhardness of top surface and bottom surface are 1 387.2 MPa, 14.6%, 632.4HV and 608.4HV respectively.
Key words:  selective laser melting    4Cr5MoSiV1 steel    support structure    laser remelting    microstructure
                    发布日期:  2021-09-07
ZTFLH:  TG142.1  
通讯作者:  fhtao63@126.com   
作者简介:  陈帅,中国人民解放军陆军工程大学石家庄校区,在读博士研究生。主要从事装备零部件快速成型的基础理论与应用研究。
陶凤和,中国人民解放军陆军工程大学石家庄校区教授,博士研究生导师。获军队科技进步一等奖2项,二等奖7项,三等奖15项,发表学术论文百余篇。
引用本文:    
陈帅, 陶凤和, 贾长治, 孙河洋. 选区激光熔化成型4Cr5MoSiV1钢的组织与性能优化[J]. 材料导报, 2021, 35(16): 16126-16132.
CHEN Shuai, TAO Fenghe, JIA Changzhi, SUN Heyang. Optimization of Microstructure and Properties of 4Cr5MoSiV1 Steel Formed by Selective Laser Melting. Materials Reports, 2021, 35(16): 16126-16132.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050017  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16126
1 Xu G C, Li J W, Zuo P P, et al. Materials Review B: Research Papers, 2020(4), 08159(in Chinese).
徐国财, 黎军顽, 左鹏鹏, 等. 材料导报:研究篇, 2020(4), 08159.
2 Wang W Q, Li Y Q, Li X, et al. Materials Review B: Research Papers, 2020(1), 02077(in Chinese).
王文权, 李雅倩, 李欣, 等. 材料导报:研究篇, 2020(1), 02077.
3 Wen S F, Ji X T, Zhou Y, et al. Chinese Journal of Mechanical Engineering, 2018, 31(6), 68.
4 Wang M, Wu Y, Wei Q S, et al. Metals, 2020, 10(1), 116.
5 Ren B, Lu D H, Zhou R, et al. Metals, 219, 34(8), 1415.
6 Liu Z Y, Qian B, Li P, et al. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(4), 566(in Chinese).
刘志远, 钱波, 李培, 等. 机械科学与技术, 2019, 38(4), 566.
7 Li B Q, Li Z H, Liu B, et al. Applied Laser, 2018, 38(5), 742(in Chinese).
李保强, 李忠华, 刘斌, 等.应用激光, 2018, 38(5), 742.
8 Wang D, Wu S B, Fu F, et al. Materials and Design, 2017, 117, 121.
9 Liu Y, Yang Y Q, Mai S Z, et al. Materials and Design, 2015, 87, 797.
10 Li D F. Optimization of support structure and technology research based on selective laser melting. Master's Thesis, Beijing University of Technology, China, 2017(in Chinese).
李东方. 基于激光选区熔化成型的支撑结构优化及工艺研究. 硕士学位论文, 北京工业大学, 2017.
11 Calignano F.Materials and Design, 2014, 64, 203.
12 Wang D, Ye G Z, Dou W H, et al. Optics and Laser Technology, 2020, 121, 105678.
13 Zhang W Y.Welding metallurgy, Machinery Industry Press, China, 1996(in Chinese).
张文钺.焊接冶金学, 机械工业出版社, 1996.
14 Chen S, Tao F H, Jia C Z.Foundry Technology, 2019, 40(7), 657(in Chinese).
陈帅, 陶凤和, 贾长治.铸造技术, 2019, 40(7), 657.
15 Chen S, Tao F H, Jia C Z. Chinese Journal of Lasers, 2019, 46(10), 1002005(in Chinese).
陈帅, 陶凤和, 贾长治.中国激光, 2019, 46(10), 1002005.
16 Ma M M. A comparative study on fundamentals of two typical laser additive manufacturing technologies of metallic. Ph.D. Thesis, Huazhong University of Science and Technology, China,2016(in Chinese).
马明明. 两种典型金属零部件激光增材制造技术基础比较研究. 博士学位论文, 华中科技大学, 2016.
17 Lei Y P, Murakawa H, Shi Y W, et al. Computational Materials Science, 2001, 21, 276.
18 Li C. Metallography principle, Harbin Institute of Technology Press, China, 1996(in Chinese).
李超.金属学原理, 哈尔滨工业大学出版社, 1996.
19 Hou W, Chen J, Chu S L, et al. Chinese Journal of Lasers, 2018, 45(7), 0702003(in Chinese).
侯伟, 陈静, 储松林, 等.中国激光, 2018, 45(7), 0702003.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[3] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[4] 韩善果, 杨永强, 罗子艺, 蔡得涛, 郑世达. 线能量对铝/钢双光束激光焊接接头组织及性能的影响[J]. 材料导报, 2021, 35(2): 2109-2114.
[5] 杨平, 毛育青, 李芊芃, 何良刚, 柯黎明. 合金元素对Cu/Sn-/Cu回流焊焊点界面微观结构及剪切性能的影响[J]. 材料导报, 2021, 35(14): 14156-14160.
[6] 方振兴, 祁文军, 李志勤. 304不锈钢激光熔覆搭接率对CoCrW涂层组织与耐磨及耐腐蚀性能的影响[J]. 材料导报, 2021, 35(12): 12123-12129.
[7] 褚夫众, 张曦, 黄文静, 侯娟, 张恺, 黄爱军. 选区激光熔化铝合金缺陷的形成机制和对力学性能的影响:综述[J]. 材料导报, 2021, 35(11): 11110-11118.
[8] 杨文涛, 何鹏飞, 刘明, 周永欣, 王海斗, 马国政, 白宇. 快速凝固过共晶铝硅合金的显微组织及摩擦学行为研究现状[J]. 材料导报, 2021, 35(11): 11126-11136.
[9] 王蒙, 张冠星, 钟素娟, 程战, 李文彬. Mg对Sn-0.7Cu钎料组织及性能的影响[J]. 材料导报, 2021, 35(10): 10147-10151.
[10] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[11] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[12] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[13] 宋亢, 坚增运, 王渭中, 陈焱. SLM成形10%SiC颗粒增强铝基复合材料的工艺优化及性能[J]. 材料导报, 2020, 34(Z2): 376-380.
[14] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[15] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed