Please wait a minute...
材料导报  2021, Vol. 35 Issue (11): 11126-11136    https://doi.org/10.11896/cldb.19120187
  金属与金属基复合材料 |
快速凝固过共晶铝硅合金的显微组织及摩擦学行为研究现状
杨文涛1, 何鹏飞2, 刘明2,*, 周永欣1,*, 王海斗2, 马国政2, 白宇3
1 西安理工大学材料科学与工程学院,西安 710072;
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072;
3 西安交通大学材料科学与工程学院,西安 710049
Reviews of Microstructure and Tribological Behavior of Fast Solidified Hypereutectic Al⁃Si Alloy
YANG Wentao1, HE Pengfei2, LIU Ming2,*, ZHOU Yongxin1*, WANG Haidou2, MA Guozheng2, BAI Yu3
1 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710072, China;
2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China;
3 School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
下载:  全 文 ( PDF ) ( 20120KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 过共晶铝硅合金由于具有高耐磨性、低热膨胀系数和高比强度而广泛应用于汽车和飞机制造业。该类合金在常规铸造下易产生粗大的脆硬初生硅相,降低合金力学性能及耐磨性。而利用快速凝固技术能够有效细化硅相,制备出高耐磨的过共晶铝硅合金。
过共晶铝硅合金的性能可以通过改变共晶硅和初晶硅的形态及其分布、二次枝晶胞的尺寸或臂间距等方式加以改善。目前过共晶铝硅合金的研究大多是关于控制共晶和初晶硅的形态和分布,而针对常规铸造的细化晶粒工艺只对25%(质量分数)硅含量以下的过共晶铝硅合金有明显效果,因此研究人员聚焦于能对高硅含量的过共晶铝硅合金实现晶粒细化的快速凝固技术。
快速凝固技术区别于常规铸造的特点是高冷却速度,研究发现冷却速度对过共晶铝硅合金的相平衡和微观结构有着显著的影响。随着冷却速度的增加,过共晶铝硅合金的微观结构细化、化学均匀性提高、固溶度增加,形成非晶及亚稳相,极大地改善了过共晶铝硅合金的性能。根据不同快速凝固技术制备的过共晶铝硅合金,其细化的显微组织及对应的摩擦学行为也有所不同。这些差异对于完善快速凝固过程中硅晶粒形核长大机制、形态演化机制及其对过共晶铝硅合金性能影响的理论体系能够起到有效的补充作用。
本文综述了快速凝固过共晶铝硅合金四种主要制备方法:衬底急冷技术、快速凝固?粉末冶金技术、喷射沉积技术和选择性激光熔化技术,分析了相关快速凝固工艺的研究现状, 对比了不同工艺制备的过共晶铝硅合金的显微组织及耐磨性能,并从理论体系、性能预测和技术工艺三方面对其未来的研究方向提出了一些可行建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨文涛
何鹏飞
刘明
周永欣
王海斗
马国政
白宇
关键词:  过共晶铝硅合金  快速凝固  显微组织  摩擦学行为    
Abstract: Hypereutectic Al?Si alloy is widely used in automobile and aircraft industry because of its high wear resistance, low thermal expansion coefficient and high specific strength. This type of alloy is easy to produce coarse brittle and hard primary silicon phase in conventional casting, which worsens the mechanical properties of the alloy and reduces its wear resistance. But rapid solidification technology can solve this problem. The properties of hypereutectic Al?Si alloy can be improved by changing the morphology and distribution of eutectic silicon and primary silicon, the size of secondary dendrite cell or arm spacing, etc. At present, the research of hypereutectic Al?Si alloy is mostly about controlling the morphology and distribution of eutectic and primary silicon, while the refining process of conventional casting is only for Si content below 25wt% of hypereutectic Al?Si alloy has obvious effect, so the researchers focus on the rapid solidification technology which can refine the grain of hypereutectic Al?Si alloy with high Si content. The rapid solidification technology is characterized by high cooling rate, which is different from conventional casting. With the increase of cooling rate, the microstructure refinement, chemical uniformity, solid solubility, amorphous and metastable phase formation of the hypereutectic Al?Si alloy greatly improved the properties of the hypereutectic Al?Si alloy. The microstructure and tribological behavior of the hype?reutectic Al?Si alloys prepared by different rapid solidification techniques are also different. These differences can effectively supplement the theoretical system of improving the nucleation growth mechanism, morphology evolution mechanism of silicon grains and its influence on the properties of hypereutectic Al?Si alloys during rapid solidification.
In this paper, four main preparation methods of rapidly solidified hypereutectic Al?Si alloy are reviewed: substrate quench technology, rapid solidification powder metallurgy technology, spray deposition technology and selective laser melting technology. The research status of related rapid solidification technology is analyzed, and the microstructure and wear resistance of hypereutectic Al?Si alloy prepared by different processes are compared. The theoretical system, performance prediction and technology are discussedin the three aspects of technology, some feasible suggestions are put forward for its future research direction.
Key words:  hypereutectic Al?Si alloy    rapid solidification    microstructure    tribological behavior
               出版日期:  2021-06-10      发布日期:  2021-06-25
ZTFLH:  TG146.2+1  
基金资助: 装备预研重点基金项目(61409230607)
通讯作者:  *hzaam@163.com;zhouyongxin.88@126.com   
作者简介:  杨文涛,2018年6月毕业于西安理工大学,获得工学学士学位。现为西安理工大学材料科学与工程学院硕士研究生,在周永欣副教授的指导下进行研究。目前主要研究领域为内孔等离子喷涂。刘明,中国人民解放军陆军装甲兵学院装备再制造技术国防科技重点实验室助理研究员。2001年7月本科毕业于陆军装甲兵学院,2018年12月在陆军装甲兵学院装备保障与再制造系取得博士学位。长期从事表面涂层、等离子喷涂方面的研究工作,先后主持或参与国家级及军队级科研项目10余项,其中主持装发预研重点基金项目1项、武器装备预研基金项目2项、获军队科技进步二等奖2项。授权国家(国防)发明专利10余项,发表论文40余篇。周永欣,1989年7月毕业于陕西机械学院,获得工学学士学位。2007年5月在西安建筑科技大学取得工学博士学位。目前在西安理工大学材料科学与工程学院从事教学、科研工作。他的研究领域为:金属基摩擦磨损材料,精密铸造和消失模技术;压力加工模具设计与新型模具材料研发。作为项目负责人或参加人参与的科研项目30余项,其中纵向课题10余项,国家级基金项目6项,省部级和厅局级基金项目8项,企业委托项目10余项。发表学术论文40余篇,其中被SCI、EI收录10余篇。出版教材一部,参编教材3部,获国家发明专利3项。
引用本文:    
杨文涛, 何鹏飞, 刘明, 周永欣, 王海斗, 马国政, 白宇. 快速凝固过共晶铝硅合金的显微组织及摩擦学行为研究现状[J]. 材料导报, 2021, 35(11): 11126-11136.
YANG Wentao, HE Pengfei, LIU Ming, ZHOU Yongxin, WANG Haidou, MA Guozheng, BAI Yu. Reviews of Microstructure and Tribological Behavior of Fast Solidified Hypereutectic Al⁃Si Alloy. Materials Reports, 2021, 35(11): 11126-11136.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120187  或          http://www.mater-rep.com/CN/Y2021/V35/I11/11126
1 Beijing General Research Institute of Mining & Metallurgy. China metallurgical encyclopedia. Metallurgical Industry Press, China,2001(in Chinese).
北京太冶研究总院.中国冶金百科全书.冶金工业出版社,2001.
2 Samuel A M, Garza?Elizondo G H, Doty H W, et al. Materials & Design,2015,80,99.
3 Liu N S, Li J Q, Liu Z X. Foundry Technology,2009,30(11),1448.
刘扭参,李俊青,刘忠侠.铸造技术,2009,30(11),1448.
4 Rajaram G, Kumaran S, Rao T S. Tribology Transactions,2010,54(1),115.
5 Dwivedi D K. Materials & Design, 2010, 31(5),2517.
6 Miller W S, Zhuang L, Bottema J, et al. Materials Science & Engineering A,2000, 280(1),37.
7 Choi H, Li X. Journal of Materials Science,2012,47(7),3096.
8 Ahmad R, Asmael M B A, Shahizan N R, et al. International Journal of Minerals Metallurgy and Materials,2017(1),93.
9 Liu G, Li G, Cai A, et al. Materials & Design,2011,32(1),121.
10 Raghukiran N, Kumar R. Materials Science and Engineering: A,2015,641,138.
11 Yi H, Zhang D. Materials Letters,2003,57(16?17),2523.
12 Shi W, Gao B, Ganfeng T U, et al. Journal of Rare Earths,2010,28(S1),367.
13 Prabhudev M S, Auradi V, Venkateswarlu K, et al. Tribology Transactions,2016,59(1),1.
14 Chong C, Liu Z, Bo R E N, et al. Transactions of Nonferrous Metals So?ciety of China,2007,17(2),301.
15 Li Q, Xia T, Lan Y, et al. Journal of Alloys & Compounds,2013,562(1),25.
16 Lu D, Jiang Y, Guan G, et al. Journal of Materials Processing Technology,2007,189(1?3),13.
17 Tutunchilar S, Givi M K B, Haghpanahi M, et al. Materials Science & Engineering A,2012,534,557.
18 Nafisi S, Ghomashchi R. Journal of Materials Processing Technology,2006,174(1?3),371.
19 Jung J G, Lee S H, Lee J M, et al. Materials Science and Engineering: A,2016,669,187.
20 Zhang Y, Miao X, Shen Z, et al. Acta Materialia,2015,97,357.
21 Hogg S C, Atkinson H V. Metallurgical and Materials Transactions A (Physical Metallurgy and, Materials Science),2005,36(1),149.
22 Otooni M A. Elements of rapid solidification: fundamentals and applications, Springer Science & Business Media, Germany,2013.
23 Archard J F. ASME Wear Control Handbook, American Society of Mechanical Engineers,US,1980.
24 Deshpande P K, Lin R Y. Materials Science & Engineering A,2006,418(1),137.
25 Wang Q, Li Q C, Chang G W. Journal of Liaoning Institute of Technology,2003,23(5),40(in Chinese).
王倩,李青春,常国威.辽宁工业大学学报(自然科学版),2003,23(5),40.
26 Hu H Q. Principle of metal solidification, China Machine Press, China,2000(in Chinese).
胡汉起.金属凝固原理,机械工业出版社,2000.
27 Alshmri, Faraj. Advanced Materials Research,2011,383?390,1740.
28 Li J, Hage F S, Liu X, et al. Scientific Reports,2016,6,25244.
29 Rong C, Shen B. Chinese Physics B,2018,27(11),117502.
30 Wang A Q, Xie J P, Wang W Y, et al. Transactions of Materials and Heat Treatment,2013,34(1),86(in Chinese).
王爱琴,谢敬佩,王文焱,等.材料热处理学报,2013,34(1),86.
31 Todeschini P, Champier G, Samuel F H. Journal of Materials Science,1992,27(13),3539.
32 Hegde S, Prabhu K N. Journal of Materials Science,2008,43(9),3009.
33 Kilicaslan M F, Yilmaz F, Hong S J, et al. Materials Science and Engineering: A,2012,556,716.
34 Kili?aslan M F, Yilmaz F, Ergen S, et al. Materials Characterization,2013,77,15.
35 Kili?aslan M F, Uzun O, Yilmaz F, et al. Metallurgical and Materials Transactions B,2014,45(5),1865.
36 Rajabi M, Simchi A, Davami P. Materials Science & Engineering A,2008,492(1?2),443.
37 Ganiger B, Chandrashekharaiah T M, Prasad T B, et al. Materials Today: Proceedings,2018,5(11),25165.
38 Wu W J, Wang A Q, Xie J P, et al. Transactions of Materials and Heat Treatment,2015,36(4),56(in Chinese).
吴文杰,王爱琴,谢敬佩,等.材料热处理学报,2015,36(4),56.
39 Kumar P, Wani M F. Journal of Tribology,2018,140(1),011603.
40 Alshmri F, Atkinson H V, Hainsworth S V, et al. Wear,2014,313(1?2),106.
41 Chen Z H,Chen D. Rapidly solidified powder aluminum alloys, Metallurgical Industry Press, China,2009(in Chinese).
陈振华,陈鼎.快速凝固粉末铝合金,冶金工业出版社,2009.
42 Qian L, Lin J, Xiong H. Journal of Thermal Spray Technology,2010,19(3),586.
43 Cai Z, Wang R, Zhang C, et al. Journal of Materials Engineering and Performance,2015,24(3),1226.
44 Zhang Q, Jiang L, Wu G. Journal of Materials Science Materials in Electronics,2014,25(2),604.
45 Zhang Q, Wu G, Jiang L, et al. Materials Chemistry and Physics,2003,82(3),780.
46 Jia Y, Cao F, Scudino S, et al. Materials & Design,2014,57,585.
47 Cai Z, Zhang C, Wang R, et al. Materials & Design,2015,87,996.
48 Cai Z, Wang R, Zhang C, et al. Journal of Materials Science: Materials in Electronics,2015,26(7),4894.
49 Ma P, Jia Y, Prashanth K G, et al. Journal of Materials Research,2017,32(11):2211.
50 Spinelli J E, Bogno A A, Henein H. Metallurgical and Materials Transactions A,2018,49(2),550.
51 Boettinger W J, Bendersky L, Early J G. Metallurgical Transactions A,1986,17(5),781.
52 Garcia A, Clyne T W, Prates M. Metallurgical and Materials Transactions B,1979,10(1),85.
53 Reyes R V, Bello T S, Kakitani R, et al. Materials Science and Enginee?ring: A,2017,685,235.
54 Khan S, Ourdjini A, Named Q S, et al. Journal of Materials Science,1993,28(21),5957.
55 Tololi B, Hellawell A. Acta Metallurgica,1976,24(6),565.
56 Kaya H, ?ad?rl? E, Gündüz M. Journal of Materials Engineering & Performance,2003,12(4),456.
57 Reyes R V, Kakitani R, Costa T A, et al. Philosophical Magazine Letters,2016,96(6),228.
58 Hosch T, England L G, Napolitano R E. Journal of Materials Science,2009,44(18),4892.
59 Liu P C.The growth and feature of primary si in high?Si Al alloys prepared by rs/sps and its effect on mechanical properties. Master's Thesis,Changchun University of Technology,2015(in Chinese).
刘鹏超.RS/SPS高Si铝合金初晶硅的生长、形态及其对机械性能的影响.硕士学位论文,长春工业大学,2015.
60 Gui M, Kang S B, Lee J M. Materials Science and Engineering: A,2000,293(1?2),146.
61 Raghukiran N, Kumar R. Journal of Materials Processing Technology,2013,213(3),401.
62 Islam M A, Farhat Z N. Wear,2011,271(9?10),1594.
63 Kumar P, Wani M F. Materials Research Express,2017,4(11),116519.
64 Rahaman M L, Zhang L. Wear,2017,376,940.
65 Peng C Q,Huang B Y. Nonferrous Metals Engineering,2002,54(1),12(in Chinese).
彭超群,黄伯云.有色金属工程,2002,54(1),12.
66 Cava R D, Bolfarini C, Kiminami C S, et al. Journal of Alloys and Compounds,2014,615,S602.
67 Chen Y G, Yang H, Zhang B Q, et al. Materials Research Express,2017,4(2),026502.
68 Liu Y, Yin J, Zhong Y. Materials Research Express,2016,3(10),106502.
69 Cui C, Schulz A, Schimanski K, et al. Journal of Materials Processing Technology,2009,209(11),5220.
70 Lavernia E J, Grant N J. Materials Science & Engineering,1988,98(none),381.
71 Grant P S. Metallurgical and Materials Transactions A,2007,38(7),1520.
72 Lefebvre A H, McDonell V G. Atomization and sprays, CRC press, US,2017.
73 Xiong B Q, Zhang Y A, Wei Q, et al. Journal of Materials Processing Technology,2003,137(1?3),183.
74 Srivastava V C, Mandal R K, Ojha S N. Materials Science and Enginee?ring: A,2004,383(1),14.
75 Wang F, Ma Y, Zhang Z, et al. Wear,2004,256(3?4),342.
76 Goudar D M, Alavandi M R, Khaji S H S, et al. Journal of the Mechanical Behavior of Materials,2018,27(3?4),25.
77 Wang F, Liu H, Ma Y, et al. Materials & Design,2004,25(2),163.
78 Elmadagli M, Perry T, Alpas A T. Wear,2007,262(1?2),79.
79 Kruth J. Journal of Materials Processing Technology,2004,149(1?3),616.
80 Bremen S, Meiners W, Diatlov A. Laser Technik Journal,2012,9(2),33.
81 Thijs L, Verhaeghe F, Craeghs T, et al. Acta Materialia,2010,58(9),3303.
82 Nagarajan B, Hu Z, Song X, et al. Engineering,2019,5(4),702.
83 Li X P, Wang X J, Saunders M, et al. Acta Materialia,2015,95,74.
84 Jia Y D, Ma P, Prashanth K G, et al. Journal of Alloys and Compounds,2017,699,548.
85 Kang N, Coddet P, Liao H, et al. Applied Surface Science,2016,378,142.
86 Kruth J P, Levy G, Klocke F, et al. CIRP Annals?Manufacturing Technology,2007,56(2),730.
87 Verhaeghe F, Craeghs T, Heulens J, et al. Acta Materialia,2009,57(20),6006.
88 Ma P, Prashanth K, Scudino S, et al. Metals,2014,4(1),28.
89 Prashanth K G, Debalina B, Wang Z, et al. Journal of Materials Research,2014,29(17),2044.
90 Gode C, Yilmazer H, Ozdemir I, et al. Materials Science and Enginee?ring: A,2014,618,377.
91 Kang N, Coddet P, Chen C, et al. Materials & Design,2016,99,120.
92 Tkatch V I, Limanovskii A I, Denisenko S N, et al. Materials Science and Engineering: A,2002,323(1?2),91.
93 Raghukiran N, Kumar R. Materials Science and Engineering: A,2016,657,123.
94 Kilicaslan F M. Journal of Alloys and Compounds,2014,606,86.
95 Srivastava V C, Mandal R K, Ojha S N. Materials Science & Engineering A,2001,304?306,555.
96 Liu Y J, Liu Z, Jiang Y, et al. Journal of Alloys and Compounds,2018,735,1414.
[1] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[2] 韩善果, 杨永强, 罗子艺, 蔡得涛, 郑世达. 线能量对铝/钢双光束激光焊接接头组织及性能的影响[J]. 材料导报, 2021, 35(2): 2109-2114.
[3] 方振兴, 祁文军, 李志勤. 304不锈钢激光熔覆搭接率对CoCrW涂层组织与耐磨及耐腐蚀性能的影响[J]. 材料导报, 2021, 35(12): 12123-12129.
[4] 王蒙, 张冠星, 钟素娟, 程战, 李文彬. Mg对Sn-0.7Cu钎料组织及性能的影响[J]. 材料导报, 2021, 35(10): 10147-10151.
[5] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[6] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[7] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[8] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[9] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[10] 谢锐, 吕铮, 卢晨阳, 王晴, 徐世海, 刘春明. 热等静压温度对14Cr-ODS钢显微组织及力学性能的影响[J]. 材料导报, 2020, 34(8): 8141-8148.
[11] 周宇, 钱丽华, 刘天宇, 张泉, 吕知清. 冷轧板条马氏体组织与力学性能研究[J]. 材料导报, 2020, 34(8): 8154-8158.
[12] 王婷玥, 邢书明, 敖晓辉, 王营. 压力对挤压铸造E级钢低温冲击韧性的影响[J]. 材料导报, 2020, 34(6): 6138-6143.
[13] 陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119.
[14] 锅渺, 李莎, 赵利平, 韩建超, 王涛. 波纹辊轧制温度对镁/铝复合板界面组织及力学性能的影响[J]. 材料导报, 2020, 34(22): 22087-22092.
[15] 孙跃, 冯曰海, 刘思余, 王克鸿. 大厚度高氮钢多层多道等离子弧增材构件的组织与性能分析[J]. 材料导报, 2020, 34(22): 22118-22123.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed